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Abstract

A parameterized external acoustic model interacting with flexible structures derived in the com-
panion paper, Part I[4], is evaluated for its model fidelity employing a spherical shell. The
mode-by-mode interaction equations of the present discrete model reveal that the model param-
eters introduced in the present acoustic interaction model can be tailored to match with either
the dominant acoustic-structural interaction frequency or its damping ratio, but not simultane-
ously both. A least-squares fit of the mode-by-mode parameters leads to a parameterized matrix
representation so that the present model can be implemented for general interaction surfaces.
Comparisons of the present parameterized model with the classical Doubly Asymptotic Ap-
proximate(DAA) models[3] show that the present model offers improved accuracy, especially
for medium-frequency ranges.

1. INTRODUCTION

In the companion paper, Part I[4], a parameterized acoustic-flexible structure model has been
derived, which is considered a significant improvement over the earlier model presented in[8, 7].
A novel feature of the earlier models is the use of a linearly weighted combination of the re-
tarded and advanced potentials. It was shown therein that the approximate models thus de-
rived bypass the need for asymptotic matching, are stable and consistent with respect to general
admissible initial conditions such as impulse incident wave and other types of incident pres-
sure conditions. This early-time consistency condition is considered an important property for
inverse identification applications, in addition to transient acoustic-structure interaction sim-
ulations, because accurate determination of impulse response functions in time or frequency
domain identification methods is critical.

A major improvement presented in Part I[4] over our precursor model[8, 7] is the parametriza-

mailto:esteban@kaist.ac.kr


ICSV14 • 9–12 July 2007 • Cairns • Australia

tion of the weighting parameter and a construction of the discrete parameterized matrix so that
the improved model can be applicable to general interaction surfaces.

For evaluation of the present improved model, first, we have focused on the comparison of
the mode-by-mode dominant interaction characteristic roots of the present parameterized model
with those of the exact case and the classical DAA models[3]. Second, we have employed dis-
tributed impulsive incident waves and examined both the frequency responses and temporal
solutions. Simulation of a plane step incident pressure wave problem was also carried out but
not reported herein due to page limitation. The results indicates that the present parameterized
acoustic-model offers improved accuracy both in terms of frequency responses, especially for
low and medium frequency ranges, and also for early-time responses due primarily for its con-
sistency property.

2. COUPLING PROCEDURE

2.1. Structure Equation

The governing equation for a structure, the equation of motion, is expressed as

Msẍ + Ksx = f (1)

where x is the displacement, Ms and ks are the structural mass and stiffness matrices, respec-
tively; f is the external forces including interaction forces emanating from acoustic field sur-
rounding the structure, and a superscipt dot designates temporal differentiation.

2.2. Approximate Equation for Acoustic Medium

The approximate model proposed in companion paper[4] is

αAp̈ + (1 + α)cA1ṗ + c2B2p = ρcαAü + ρc2A1u̇ (2)

where p is the pressure on surface in normal direction, c is the speed of sound in acoustic fluid,
ρ is the density of acoustic fluid and α is the free parameter that represents the weighting of the
retarded potential1

2
(1 − α) vs the advanced potential1

2
(1 + α). Equation (2) consists of A, A1

and B2 boundary integral equations. They are defined as

B2p(t) =

∫
S

1

R2
PQ

∂R

∂n
p(Q, t)dS (3)

A1p =

∫
S

1

RPQ

p(Q, t)dS (4)

Ap(t) =

∫
S

1

RPQ

dS

(
2

∫
S

1

RPQ

∂RPQ

∂n
dSp

)−1 ∫
S

p(P, t)dSp (5)

where RPQ is the distance from the pressure source P to a typical point on the structural surface
Q, n is the normal vector going into fluid at Q point as shown in Figure 1. In physical terms, B2

and A1 represent the late-time operators, A represents the early-time plane wave responses, and
(1 + α)A1 is considered to account for intermediate frequency characteristics. The replacement
of A by A in the above equation is a computational expediency which we have found feasible.
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As stated in Part I[4], α−1 is given by the following parameterized discrete matrix

α−1 = B2N
−1 − I + 2B1A

−1
1 , N = A1A

−1
A1 (6)

2.3. Coupled Acoustic-Flexible Structure Interaction Equations

When the structure is placed in an acoustic medium, the structural equation (1) is subjected
to the incident and scattered pressures whose governing equation is given by (2). The coupled
external acoustic-structural interaction equations are now give as

Msẍ + Ksx = −GA(pI + ps)

αAp̈s + (1 + α)cA1ṗs + c2B2ps = αρcA(GT ẍ− üI) + ρc2A1(GT ẍ− u̇I)
(7)

where G is the transformation matrix from normal force on the fluid mesh to nodal force on
the structural mesh, A is the elemental area matrix, ps is the scattered pressure on the surface
and pI and uI are incident pressure and velocity, respectively. We assume that the pI and uI are
known.

3. APPLICATION TO A SPHERICAL SHELL

In a spherical polar coordinate, the pressure and displacement on the surface of a sphere can
be expanded as Legendre polynomial series. Using this series expansion, Huang[1], Zhang and
Geers[2] have obtained the exact solutions for the interaction problems of a submerged spher-
ical shell excited by an incident plane step wave excitation. We will adopt the spherical shell
subjected to specific excitation forces to evaluate the performance of the proposed interaction
model (2) as compared with the exact solution of Huang[1] and the results obtained by the
DAA2(1978) model[3].

3.1. An Elastic Spherical Shell Surrounded by Acoustic Medium

Figure 1 shows a flexible elastic spherical shell of radius a, thickness h, an isotropic material
with Young’s Modulus E, density ρs, and Poisson’s ratio ν. The shell thickness-to-radius ratio
h/a is small enough to apply thin shell theory and the longitudinal wave speed of the shell is
denoted by cs =

√
E/ρs(1− ν2).
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Figure 1. A submerged spherical shell excited by a cosine-type impulse force

The shell geometry is described using a spherical coordinate (R, θ) with its origin at O
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and an in-vacuo condition of its interior. The radial and meridional displacements of the shell are
denoted by W (θ, t) and V (θ, t), respectively. For subsequent analysis, dimensionless variables
are introduced: time(t), pressure(p) and length are normalized to a/c, ρc2 and a, respectively.
The external wave pressure, p(r, θ, t), is the sum of the pI(r, θ, t) and ps(r, θ, t). For numerical
simulation, the submerged spherical shell as shown in Figure 1 has the parameters: h/a = 0.01,
ρs/ρ = 7.7 and cs/c = (13.8)1/2.

3.2. Modal equations for a sphere

For a sphere, the acoustic wave equation in spherical coordinates yields the modal solution in
terms of Legendre polynomials as

φs (r, θ, s) =
∞∑

n=1

φs
n(r, t) Pn(cosθ) (8)

where Pn(x) is the nth Legendre polynomials. and φs
n is the component of φs for nth Legendre

polynomial. Applying (8) to the Laplace transformed wave equation, the ordinary differential
equation is obtained as

r2d2φ
s

n

dr2
+ 2r

dφ
s

n

dr
− [n(n + 1) + r2s2]φ

s

n = 0 (9)

whose regular solution [6] is given by

φ
s

n(r, s) = Bn(s)κn(rs) (10)

where s is the Laplace Transform variable, Bn(s) is the constant to be determined from the geo-
metrical compatibility conditions and κn(rs) is the nth order modified spherical Bessel function
of the third kind. The pressure and particle velocity of acoustic fluid can be related by

p(r, t) = φ̇(r, t) u = −dφ

dr
(r, t). (11)

Using (10) and (11), Bn(s) can be obtained and the desired Laplace transformed analytical
modal solution for the scattering pressure is obtained as

ps
n(s) = −κ′n(s)/κn(s)un(s). (12)

It should be noted that the above analytical modal pressure equation needs to be coupled with
the equations of motion for the elastic sphere to bring about the coupling of the flexible structure
with the surrounding external acoustic medium.

Similarly, the DAA2[3] and proposed model[4] can be expressed in terms of Legendre
polynomials, which are summarized below:

DAA2(1978) : s2pn + (1 + n)spn + (1 + n)2pn = s2un + (1 + n)sun (13)

Present model : αns
2pn + (1 + αn)spn + (1 + n)pn = αns

2un + sun (14)

where αn is the nth-mode weighting parameter obtained from the parameterized matrix in (6)
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given by

αn = 1/n for n > 0 and α0 = 1 if n = 0 (15)

Figure 2 shows the poles of acoustic impedances for the exact solution (12), the DAA2(1978)
(13), and the present model (14) corresponding to the increasing order of the Legendre polyno-
mial. In Figure 2, the number of exact poles increases by one as the Legendre polynomial order
increases. But the DAA2 and the present model have only two poles regardless of the modal
order. For 0th and 1st modes, the present model captures the exact solution’s poles whereas the
DAA2(1978) does not. For the other modes, the magnitudes of real and imaginary values of
the poles calculated by the DAA2(1978) and the present model linearly increase. According to
Figure 2, the present model appears to approximates each of the dominant roots more closely
than the DAA2(1978).

As an additional consideration, a structure interacting with acoustic medium has two kinds
of poles : lightly damped structural poles and highly damped pressure poles. Among them, the
most dominant poles are the lightly damped structural poles corresponding to the radial dis-
placement. Figure 3 shows the free-vibration root loci of a spherical shell equations[9] interact-
ing with acoustic medium modeled by (12), the DAA2(1978) (13) and the present model (14)
for n = 2. Material and geometric parameters of these equations are chosen according to Figure
1. In particular, the roots-locus of the present model as the the parameter α2 is varied is shown,
which indicates that the present model may be tailored to accurately capture the frequency. Ta-
ble 1 presents the mode by mode dominant structural poles of the exact solution, DAA2(1978)
and the present model. Note that the free parameter(α) of the present model has been chosen so
that the dominant poles of the present model are as close as possible to those of the exact solu-
tion. Notice 1/α increases almost one by one as the mode increases, hence the formula adopted
in (15). Therefore, the discrete matrix parameterization of α defined in Part I[4] constitutes a
good choice.
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Figure 2. Acoustic impedance poles of exact solution, discrete DAA2 and proposed model order by order

3.3. A Submerged Spherical Shell Excited by Impulsive forces

The submerged spherical shell excited by a plane step wave has been analyzed in many papers.
For this example problem, many of the existing approximate models perform rather well. For
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Figure 3. Free-vibration root loci for a spherical shell surrounded with water, n= 2 and the roots-locus of
proposed model by α
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Table 1. Mode-by-mode dominant structural roots for a spherical shell surrounded by water

the present evaluation, we have chosen the submerged spherical shell excited by a cosine-type
impulse force as shown in Figure 1. As we will see, this example problem is characterized by
the velocity and pressure transient response components that are dynamically changing from
the early time to the late time period. This means that a large number of modes will participate
with different weights at different time window, thus directly exposing the roles of different
characteristic interaction poles as shown in Figure 2.

Figure 4 shows the radial velocity responses on a submerged spherical shell at φ = 180

and shows, at early time, that the radial velocity is rapidly changing, and followed by the pe-
riodic responses. Observe that for the late-time period, the DAA2(1978) and the present model
follow with a reasonable phase and amplitude fidelity the exact radial velocity responses. How-
ever, the DAA2(1978) over-estimates the early time peak while the present model predicts the
early time responses with high accuracy. This difference is caused by the inaccuracy of the low-
mode poles of the the DAA2(1978) shown in Figure 2. Figure 5 shows the frequency response
at φ = 180. Observe the DAA2(1978) captures more accurately the low-mode peak amplitude
than the present model; however, the present model accurately estimates high-frequency peaks.
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Figure 4. Radial velocity response and the error of radial velocity responses with respect to exact solution
on a submerged spherical shell at φ = 180o in detail
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Figure 5. Frequency Response Function of radial velocity responses on a submerged spherical shell at
φ = 180o

4. CONCLUSIONS

In the present Part II, the approximate acoustic model derived in Part I [4] has been evaluated
for its performance and validation. For evaluation purposes, a submerged elastic spherical shell
excited by a cosine-type impulse force has been used, and compared with the exact solutions
and the DAA2(1978) results. This example shows the characteristic of early time responses es-
timated by both approximations. Although not reported due to page limitation, we have also
carried out evaluation for the case of step plane wave excitation, which show a similar perfor-
mance. Clearly, the present model captures the early-time response accurately while introducing
somewhat higher damping. Remedy for this and other aspects of the present model are being
carried out and will be reported in a future communication.

It should be noted that the present model needs to be evaluated for its performance for
more discrete general structural surface geometries, in particular, cylindrical shapes. Work re-
quiring discrete structural models is actively pursued at present.
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