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Abstract 
 
In this study we investigate the effect of abrupt geometric discontinuities on the vibration of a 
Timoshenko rotating beam. The beam model is created using finite element code developed 
on MATLAB and stop and pass bands are identified using periodic analysis. The results are 
verified using published data. Numerical results indicate the effectiveness of such structure 
configuration on vibration attenuation. 

1. INTRODUCTION AND LITERATURE SURVEY  

The term “Periodic Structure” is used to describe structures that consist of a set of identical 
parts, cells, connected together.  Periodic Structures have drawn the attention of researchers 
since the mid-sixties  [1]- [9] because of their high ability to attenuate vibrations. Meanwhile, 
special attention is given to rotating beams  [10]- [23] as rotating beams had wide range of 
engineering applications. Special attention is given to short beams where rotary inertia is 
taken into consideration  [12],  [14],  [16],  [20],  [21] and  [23] . In this paper, we will present an 
attempt to demonstrate the ability of geometrical periodicity of a rotating Timoshenko beam 
to attenuate vibrations.  

2. PERIODIC ROTATING TIMOSHENKO BEAM 

2.1. Displacement Field 

Figure 1 shows the configuration of a periodic rotating Timoshenko cantilever beam. The 
beam of length (L) is connected to a rigid hub of radius (a) and rotates about the hub axis with 
angular velocity (Ω). The beam itself consists of geometrically identical cells. Each cell 
consists of two elements as shown in Figure 2. Each element is three-node elements with four 
degrees of freedom per node. 
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Figure 1: configuration of periodic rotating Timoshenko beam 

 

 
Figure 2: Typical cell configuration 

 
Figure 3: Element degrees of freedom 

 
The total deflection of the element as shown in Figure 3 at location (x) in z-direction can be 
expressed by: 
 

)()()( xwxwxw sb +=  (1)

 
Where the subscripts b and s denotes the bending and shear deformations in xz plane 
respectively. Both deformations are assumed to be fifth order polynomials. They are similar in 
nature but different in nodal displacements. The elements degrees of freedom can be 
expressed by:  
 

 
Where N(x) is the shape function and wi denotes either wb or ws.   

2.2. Total System Energy  

2.2.1. Strain energy 

The system strain energy due to bending deformation and rotary inertia can be expressed as 
follows: 

 
Where E and G are Young’s modulus elasticity and modulus of rigidity, Ks is the shear factor, 
Iyy and A are the moment of inertia of cross-section and its area. fc(x) is the centrifugal force 
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due to rotation. The centrifugal force will be discussed in details later in this section.  

2.2.2. Kinetic energy 

The element kinetic energy (T) is given by: 
 

 
Where ρ is the mass density.  

2.2.3. External Work 

The external work due to externally applied force (F) is given by:  
 

 

2.3. Hamilton’s Principle  

According to Hamilton’s principle, the first variation of the system total energy equals to 
zero.  
 

 

2.3.1. Stiffness matrix  

The stiffness matrix can be derived by taking the first variation for the first integral of strain 
energy given by equation (3): 
 

 
Where the subscript x denotes differentiation once with respect to x. 

2.3.2. Rotation-induced stiffness matrix  

The rotation-induced stiffness is the added stiffness due to centrifugal force. It can be derived 
by taking the first variation of the second integral of strain energy in equation (3): 
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2.3.3. Mass matrix  

The Mass matrix can be evaluated by taking the first variation of the kinetic energy, given by 
equation (4), and integrating by parts once:  
 

 

2.3.4. Force vector 

The vector of externally applied force can be expressed by: 
 

 

2.3.5. Element matrix equation 

Finally the element matrix equations can be expressed by: 
 

 

2.4. Centrifugal Force  

The centrifugal force induced by rotation at station (x) within the ith element, measured from 
its left end can be expressed as follows: 
 

 
Where (a) is the hub radius, (xi) is the distance from the beam root to the left end of the 
element. (ζ) is a local coordinate parallel to x-coordinate and is measured from the general 
station (x) as shown in Figure 1.  
Since the beam is not uniform, the integration in equation (12) should be rewritten as: 
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Where ρAj , xj and Lj is the mass per unit length of the jth element, distance from root to its left 
end and its length respectively. 

2.5. Periodic Analysis 

When a wave faces abrupt change in geometry and/or material properties, part of it reflected. 
This reflection is destructive in some frequency bands called stop bands. In order to locate 
these stop bands, transfer matrix analysis is used to formulate an input/output relation 
between forces and displacements at left (node 1) and right (node 5) ends of the cell. See 
Figure 2.  
 

 
By condensing the internal nodes, the above relation can be rewritten as: 
 

 
Where w1, F1, w5 and F5 are the displacements and forces at nodes 1 and 5 respectively. 
Rewriting the above equation in form of input/output relation  [9]: 
 

 
Assume: 
 

 
Substituting equation (18) into (17): 
 

 
The above eigenvalue problem can be solved for propagation factor µ, which is, generally, a 
complex number its real part represents the boundaries of the pass/stop bands, and the 
imaginary part gives the attenuation value. Since the transfer matrix [T] varies from one cell 
to another, the location of stop bands will vary to. Thus average will be taken for all cells.  

3. NUMERICAL RESULTS 

The finite element model described above has been developed on MATLAB 7.0. Herein after, 
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some numerical results are listed for comparison purposes. However, no test data are 
published for rotating periodic Timoshenko beam. Thus, comparison will be accomplished on 
two steps. The first, comparing the natural frequencies generated by this model for uniform 
beam with literature  [10]. The second, comparing results for periodic Timoshenko beam with 
published Euler-Bernoulli periodic beam  [8] 

3.1. Uniform Rotating Timoshenko Beam 

Stafford and Giurgiutiu  [10] derived semi-analytical methods to evaluate natural frequencies 
of rotating Timoshenko beam. Table 1 contains comparison between the current finite element 
model and reference  [10]. These non-dimensional natural frequencies are calculated for beam 
with characteristics stated in Table 2. From Table 1, the finite element model showed good 
agreement.  

Table 1: Non-dimensional natural frequencies of uniform rotating Timoshenko beam 

Mode Exact (Ref.  [10]) Current Model 
1 6.8509 6.9301 
2 19.6787 19.839 
3 38.5758 38.679 
4 56.295 55.229 

 
Table 2: Characteristics of uniform rotating Timoshenko beam 

L EI ρI E/G ν 
Passion Ratio 

L/R 
 (length-to-radius of 

gyration) 

Ω=
EI
AL2ρα  

Non-dim rotational 
speed 

1 1 1 2.6 0.3 10 6 
 

3.2. Periodic Rotating Timoshenko Beam 

For the sake of comparison, reference  [8] is utilized where periodic rotating Euler Bernoulli 
beam had been analyzed both numerically and experimentally. The parameters of the selected 
beam can be found in Table 3. Figure 4 shows the tip response of the selected beam in 
comparison with a similar plain beam of thickness 1 mm subjected to rotation speed or 5 
revolutions per second (300 rpm). It is clear from the figure that tip response is attenuated 
when average attenuation factor is nonzero. The current model showed good agreement with 
data published in reference  [8]. 
 

Table 3: Characteristics of periodic rotating beam 

Material 
(Aluminum) 

Beam dim. (cm) Thin part Thick Part 

E 
GPa 

ν ρ 
Kg/m3 

Hub 
radius 

Length width Cell 
Length

Length
cm 

Thickness 
mm 

Length 
cm 

Thickness
mm 

71  0.3 2700  5  45  3.6 11.25 6.25 1  5 3 
 
Figure 5 shows the same beam when it is subjected to rotation speed of 3000rpm. From the 
figure it is noticed the attenuation factor is getting wider with less attenuation value.  
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Figure 4: Frequency response of periodic rotating Timoshenko beam (5 rev/sec) 
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Figure 5: Frequency response of periodic rotating Timoshenko beam (50 rev/sec) 

4. CONCLUSIONS 

In this study, a finite element model for a periodic rotating Timoshenko beam has been 
presented. From the results shown, the model proved that geometrical periodicity has high 
ability to attenuate vibrations in some frequency bands showing good agreement with 
published data. Also, increasing the rotation speed broaden the stop bands with less 
attenuation value. Proper design can achieve high attenuation value for some target frequency 
bands. The selected 3-node 4 DOF/node element showed good results. 
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