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Abstract 
 
Stereausis is a biologically motivated model proposed by Shamma which encodes both binaural 
and spectral information in a unified framework to simulate the processing of human binaural 
auditory system. In this paper, a new type of cepstrum coefficient is proposed based on this 
model. Two-channel acoustic signals are first processed by the stereausis binaural model to 
synthesize the spectral information and reduce the interference of noise signal. The binaural 
cepstrum coefficient is then extracted based on the diagonal vector of the stereausis model's 
output pattern, and is applied as feature to the multi-class acoustic target recognition. Learning 
Vector Quantization (LVQ) algorithm is implemented as the classifier and is tested by samples 
of vehicle acoustic signals. Experimental results show that binaural cepstrum coefficient 
improves both the performance and generalization of the classifier, especially at low SNR. 

1. INTRODUCTION 

Acoustic ground target recognition is of great interest to many applications due to the fact that 
the targets always have distinctive acoustic signatures. However, the targets’ acoustic signals 
are often mixed with interferences, such as wind noise. Therefore, it is important for the 
recognition system to extract robust features  

Various techniques have been applied to feature extraction. Sampan used the short time 
strength of the acoustic signal to classify vehicles into four classes [1]. However, it is hard for 
the time domain features to distinguish different vehicles with nearly the same size and engine 
power. For more precise classification, features extracted from the frequency domain must be 
considered. A 50-dimentional FFT based feature was used in [2], and the maximal percentage 
of correct classification is about 70%. Cheo et al. distinguished two types of vehicles and get a 
98% correct classification by combining the short time Fourier transform (STFT) and wavelets 
as feature [3]. But for more types of vehicles, their method can not guarantee the same 
performance. The peripheral auditory model was used to extract features in [4], and the best 
performance is 92.61% without decision fusion. Data processed by these feature extraction 
algorithms mentioned above are all collected from mono-channel acoustic signal. Since the 
target information is limited and the interferences are difficult to be eliminated for 
mono-channel acoustic signal, it is hard to guarantee the robustness of the feature extracted 
from this signal. 
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Considering the advantages of array signal processing techniques and the limits on the 
costs and sizes of equipments used in practical scenarios, a two-microphone array with about 35 
cm inter-microphone distance is designed to collect acoustic signals.  For this small aperture 
microphone array, the binaural model is a good choice to measure the similarities and 
differences between the two input signals. Based on these, the feature extraction algorithm is 
designed to get robust feature to improve the performance of the recognition system [5]. 

2. STEREAUSIS BINAURAL MODEL 

The stereausis model is a binaural hearing model proposed by Shamma [6]. As shown in Fig 1, 
the two input signals are first processed by the cochlea model, and then the outputs of the two 
cochlea models are cross-correlated inside the binaural model to obtain the output pattern Y of 
the stereausis model. 
 

 
Figure 1. Structure of stereausis model 

2.1 Cochlea Model 

The core of the cochlea model is a constant Q filter bank served as the cochlear filters. The 
biological counterpart of this filter bank is the spatially distributed basilar membrane along the 
cochlea. The basilar membrane at different location of the cochlea appears to be a bandpass 
filter sensitive to particular frequency stimuli. 

In the cochlea model, an acoustic signal x is filtered by the cochlear filters: 
 
 1( , ) ( ) ( , )y n m x n h n m= ⊗  (1) 
 
where h(n,m) is the impulse response of the mth cochlear filter and y1 are the spatiotemporal 
patterns of basilar membrane vibrations. Then it is followed by a nonlinear transformation that 
simulates the transduction from basilar membrane vibration into intracellular hair cell potential 
[7]. This transformation is described as: 
 
 2 1( , ) ( ( , ))y n m g y n m=  (2) 
 
where g(x) is a sigmoid function. 
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2.2 Binaural Model 

As shown in Fig.1, the two output patterns of the cochlea model are fed in stereausis binaural 
network simultaneously and the output pattern Y of stereausis model is an M×M matrix, where 
M is the number of filters in the cochlear filter bank. Each (i,j)th node of the binaural network 
performs the following operation: 
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N =

= ∑ i  (3) 

 
where Xi(n) and Xj(n) are the ipsilateral and contralateral inputs at time n, N is the length of data 
frame. 
 

 
Figure 2. Output pattern of stereausis model 

 
Fig 2 shows the output pattern of stereausis model obtained from 256 ms vehicle signal at 

1 kHz sampling rate. 

3. BINAURAL CEPSTRUM COEFFICIENT  

The stereausis pattern (Fig 2) describes many characteristics of the binaural signals, such as 
spectrum, interaural level differences (ILD), and interaural time difference (ITD). A dominant 
peak appears along the main diagonal if the two inputs are identical to each other. it is 
equivalent to the audio spectrum described in [7]. Fig 3 shows that compared with FFT, the 
main diagonal reduces the interference of noise and maintains main spectral characteristics of 
the target by synthesizing the target information contained in the two inputs. As an output of the 
binaural model, the main diagonal mimics the result of spectral analysis of human hearing 
system. Thus it can be used as feature in acoustical target recognition. 

Because of the ITD and ILD between two input signals, the dominant peak often deviates 
from the main diagonal. Then the modified main diagonal could be obtained by averaging the 
several diagonals besides the main one as shown in Fig 1. If the aperture of two sensors is small, 
the departure will be negligible. 
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Figure 3. Contrast between Fourier spectrum and the main diagonal of stereausis pattern 

 
MFCC (Mel Frequency Cepstrum Coefficient) is one of the most popular features used by 

researchers in the speech recognition field. It provides a great improvement over real cepstrum 
because it introduces the mel filter bank motivated by perceptual characteristics of human 
hearing. However, the stereausis binaural model simulates the structure of human audio system 
more precisely and it makes use of binaural signals to enhance the robustness of the output 
pattern, thus the mel filter bank could be replaced by the stereausis binaural model. 
 

 
Figure 4. Computation of binaural cepstrum coefficient 

 
As shown in Fig 4, acoustic signals collected by two microphones are fed into the 

stereausis binaural model, and then binaural cepstrum coefficient is computed from the 
log-magnitude diagonal of stereausis pattern using discrete cosine transform (DCT). 

4. EXPERIMENTAL RESULTS 

The main goal of the ground target recognition system in this paper is to classify four types of 
vehicles correctly based on the target acoustic signals. 

The vehicle acoustic signal is approximately confined to the range of 20 to 400Hz, and 
the nonstationarity is typical for this signal. Approximately, vehicle signal can be recognized as 
stationary in 250ms or less time. Thus in our recognition system, acoustic signal is collected by 
two microphones at a sample rate of 1 kHz.  

The signal is segmented into 256-point frames. A 32-dimensional binaural cepstrum 
coefficient is extracted from each frame of data with the method described above. In addition, a 
24-dimensional MFCC is also obtained with the VoiceBox toolbox, including 12-dimentional 
MFCC and 12-dimensional △MFCC. And a 32-dimensional wavelet is calculated based on the 
db6 wavelet. 
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Learning VQ2.1 [8] is adopted as the classifier in this recognition system. Its initial 
codebook consists of sample selected randomly from the sample set [9], and the size of the 
codebook is defined by users. 

4.1 Classification Performances of Different Features 

In the experiment, 3-folder cross validation is applied to estimate the performances of the three 
types of features [10]. The mean value and standard deviation of correct rate listed in Table 1 
are obtained from the results of 15 independent runs. 

Due to the low dimensionality of MFCC feature, stable performance is obtained with a 
smaller codebook. Increasing in the size of the codebook improves the performance of binaural 
cepstrum coefficient and wavelet features due to the complexity of high dimensional feature 
space. However, a stable performance independent on the size of the codebook is obtained 
finally and it indicates the difference of intrinsic separability between the three types of features. 
It is obvious that binaural cepstrum coefficient achieves better performance. 
 

Table 1. Performances of 3 types of features 

Size of 
codebook 

Binaural CC 
(%) 

MFCC 
(%) 

Wavelet 
(%) 

100 92.01 (0.195) 92.68 (0.644) 86.24 (1.085) 
300 94.75 (0.272) 92.66 (0.415) 89.57 (0.576) 
400 95.27 (0.409) 92.51 (0.638) 90.22 (0.505) 

 

4.2 Classification Performances at Different SNR 

In this experiment, we add white noise to the original signal and extracted the three types of 
features mentioned above at different SNR. The size of the codebook is set to be 300, and the 
average performances of the three types of features are obtained through the same method 
described in section 4.1. 

 
Figure 5. Performances of 3 types of features at different SNR 

As shown in Fig 5, at low SNR, binaural cepstrum coefficient is more robust than MFCC 
and the performance of the recognition system descends more slowly. For SNR above 10 dB, it 
outperforms the wavelet feature obviously. Binaural cepstrum coefficient improves the 
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robustness and performance of the recognition system evidently. 

5. CONCLUSIONS 

Experimental results show that binaural cepstrum coefficient achieves a better balance between 
robustness and performance of the recognition system. At high SNR, it guarantees better 
performance than MFCC feature; and it is more robust than wavelet feature at low SNR. 

Evidently, this feature extraction method based on binaural model is easier to reduce the 
interference of noise signal, and it guarantees the feature’s robustness. We could try to fuse 
more sensors’ data and design new method for more robust feature. On the other hand, binaural 
model also measures the difference between the two input signals, and the binaural pattern 
contains both ITD and ILD cues. So target recognition and orientation could be achieved 
synchronously by the system based on the binaural model. 
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