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Abstract

An algorithm is developed which takes advantage of the pestharacteristics of inte-
gration and differentiation operations which can produc@ptimal time-domain estimate of
a velocity signal when a displacement and an acceleratgrabare measurable. Simulations
are carried out with Matlab where synthetic data is gendrtieough solving the equations
of motion of a multi-degree of freedom vibrating system. Teéocity optimisation technique
for velocity estimation is applied to the acceleration argpldcement signals and the result is
compared to the true velocity signal. A parametric analigssarried out on the technique, as
a function of extraneous noise on the simulated signals elsa the integration and differen-
tiation operator employed. Based on the results of the stioaks, an experiment is performed
where a reconstructed velocity is compared to a velocityaigieasured directly using a laser
vibrometer.

1. INTRODUCTION

Modern experimental identification techniques, althougitywg in algorithm, generally require
high quality excitation and response signals - see Rice &hitrck [1], for a representative
account. These signal; force, displacement, acceleratonshould ideally be acquired directly
from their respective transducers. However, due to conssrén size or budget, this is not
always possible and quite often it is necessary to transsgmals by the use of differentiation
or integration algorithms, whether in the time or the fregqpyedomain. These differentiation
and integration operators introduce errors into the t@nséd signals when there is extraneous
noise present, which is usually the case. Specificallyensiamplified with a bias towards high
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frequencies for a differentiated signal and low frequesiéoe an integrated signal.

This being recognized as a significant problem by both reseas and field-engineers, it
IS somewhat surprising to notice the lack of attention ierees by the community dealing with
system identification, at least in the open literature. kinadess, if not explicitly, this issue can
often be perceived in the background of experimental ifieation papers - see, for instance,
Richard et al. 2] or Zhao et al. 8].

Basically, the differentiation of a signal in the frequenonthin is achieved by multiply-
ing the Fourier transform of the time history hy. Similarly the integration can be determined
by dividing byiw (taking symmetrical properties of the FFT into accounthdise is contained
in the original time histories then it also will be multipti®@r divided byiw. Due to this, for the
case of differentiation, the corruptive influence of nois# wcrease with frequency whereas
for integration it will decrease. Hence differentiatedptieement signals will typically exhibit
undue high-frequency energy, while integrated accetamagignals will display unacceptable
low-frequency excursions, both of them clearly unphysitais algorithm uses both estimates
of velocity from integrated acceleration and differergchtiisplacement and combines the more
accurate regions of both to produce an optimum velocityaigdeing based on a frequency-
domain criterion, the method proposed here is aimed atgrosiessing of experimental signals
for off-line identification purposes and is thus not suitedreal-time control implementations.

1.1. Basic Algorithm for Velocity Reconstruction

Consider any data recordt) of total lengthT,. that is stationary with zero meap,(= 0). Let
the record be divided inte, contiguous segments, each of len@thEach segment of(¢) is
termedz;(t), wherei = 1,2, ..., n4. In digital terms, each record segmentt), is represented
by N data valuegx;,}, withn = 0,1,2,..., N — 1. Given this definition for digitised signals
(the sampled acceleration and displacement signals fonghed, a discrete, finite, single sided,
autospectral density function estimate for any sigria) may be written as

N

C S XE k=01, ®
i=1

ndNAt

Gmx(fk) - ' 9

Figurel shows a block diagram of the basic algorithm. The noisy disgient and ac-
celeration signals, whether simulated or experimentaldéferenciated and integrated respec-
tively. Averaged autospectra are calculated from thessasgusing a sufficiently high number
of averages and ensuring an adequate frequency resolliherpresence of noise is assumed
to increase the energy in the signal, and so, by comparingubepectra, a cut off frequency
(fcut) is determined which chooses the sections of the twichvimave the lowest energy. Based
on this cut-off frequency (and corresponding bin numbée,EFTs of the full length displace-
ment and acceleration signals are filtered in the frequeanyaih. The filtering is simply a case
of multiplying the unwanted Fourier coefficients by zerding the symmetrical properties of
the FFTs into account. The two filtered FFTs are added and Wprp@ng an inverse FFT
operation, the optimum estimate of the velocity signal mtilme domain may be obtained.

1.2. Variant on the Basic Algorithm

This is very similar to the previous method but instead okipig a single cut-off frequency, the
two power spectra are compared frequency by frequency &otie with the least energy and
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Figure 1. Block Diagram of Optimal Velocity Algorithm

the corresponding FFT’s are combined based on this. Althaogntioned, this variant of the
basic algorithm will not be further explored here.

2. NUMERICAL SIMULATIONS

2.1. Test Problem

Using MATLAB, synthetic data was generated to simulate aalingvo degree of freedom sys-
tem. This simple oscillator had the characteristics of bo#sses being equal to 1 Kg, natural
frequencies being 10Hz and 200Hz, and damping being setcht dashpot in order to ob-
tain modal damping values of 5% and 1% respectively. Thigesysvas excited with a single
random force with a white noise excitation spectrum.

The signals, (excitation and response), could have unateck gaussian noise added be-
fore beginning the algorithm. The objective was to use thsyndisplacement and acceleration
signals to solve for velocity which could then be comparethto“true” velocity produced by
the generator. Noise was added to each of the signals ugrigltbwing equation,

OR [(0%) (1) 2)

where n is the noise in percent and r(t) is a random signalwhalised standard deviation. The
three signals of interest are shown in fig@re

2.2. Differentiation and Integration Operators

For this paper, it should be noted that all differentiation @antegration was done in the time
domain. However frequency domain techniques are availahieh eliminate frequency de-
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Figure 2. Response signals for simulated data. No noise case.

pendent biases on the operators which can be present eves abbsence of noise. In order to
highlight these frequency dependent biases, two (time dynrategration and differentiation
algorithms were implemented and the results of their impletation are to be seen in figures
3(a) and 3(b). No noise has been added in these two cases. For the caséeatidtfon, it is
seen that for both of the algorithms implemented, the opesaend to bias the result down-
wards at higher frequencies. The better performing firstrétlym calculated simply according
to the finite difference scheme

_fi—Jo

fio =15 @)

is chosen subsequently over the “three-point formulasdratigm of the second technique. This
downward bias of the operators invalidates the assumptiainnoise adds energy to the spec-
trum of the signal, as a small amount of additional noise nesylt in a differentiated signal
with less energy at high frequencies than the true signakeier, it takes only 0.5% of added
noise to counteract the downward bias and so, for real sgthas bias may be ignored.

For the integrated signals, the rectangular rule

b b—a
1= [ttt et (=000 @
results in practicaly no bias in the integrated signal, and she preferred algorithm over the
trapezoidal rule.

2.3. Parametric Analysis

In order to study the algorithms performance, a noise geitgiinalysis was performed on
the signals. Tests were carried out with equal and diffegpententages of noise superimposed
on the acceleration and displacement signals. Both scanaréopossible in an experimental
environment. An error was calculated between the noisyn®cocted velocity and the true
generated velocity in each case according to

[true velocity(t) —processed velocity)] %« 100 (5)

o
Error =
Oltrue velocit)(t)]

Table 1 shows the results for these tests. The table is divided hmeetmain blocks where
they show the error between the true velocity and the intedracceleration, differentiated
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(a) Differentiated displacement versus true velocily) Integrated acceleration versus true velocity. Calcu-
Calculated from, 1: the 2-point finite difference schenteted from, 1:the rectangular summation rule, 2: the
2: the 3-point finite difference scheme. trapezoidal rule.

Figure 3. Comparison between different integration and differentiatiaritiigns. Results are compared
with “true” simulated velocity.

displacement and optimal velocity respectively, each amation of noise.

From the table it is seen that for all combinations of noiselléehe optimal velocity
algorithm results in the lowest error. However, it is alsersdue to the operator bias, that even
with zero noise, a 27% error results. Once there is a realestel of noise present in the signals,
it is seen how the algorithm far outperforms the sole impletaigon of either the integration or
differentiation algorithms, with= 30% error for most noise levels.

Figure4 illustrates how the cut-off frequency is chosen for the aasE0% noise, with
figure5 comparing the optimal velocity with the true noiseless gi#yo The large dc component
in the integrated acceleration due to low frequency amplhifio is the principle cause of its
error whereas it is the high frequency region where the miffgated displacement fails. Both
of these characteristics are seen in the time domain recetish of the signals in figuré.

Table 1. Sensitivity analysis to noise. Synthetic data.

Percentage Nois# Error From True Velocity ‘
A D Integrated accelerationDifferentiated displacementOptimal Velocity Estimation (Basic Algorithm
0 0 28 28 27

1 1 106 34 28

2 2 206 49 28

5 5 510 105 28

10 10 1020 205 29

20 20 2038 406 34

50 50 5095 1014 59

0 10 28 205 28

10 0 1019 28 27

5 10 510 205 31

10 5 1019 105 29

3. EXPERIMENTAL ANALYSIS

A useful application for the technique is in the modal anialp$ continuous systems. Figure
shows a laboratory rig used to experimentally examine theéanof vibration of a model aero-
plane wing. The rig was modified as indicated in the schenwdtigure 8. A 2-D aluminium

5
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Figure 4. Choice of cut-off frequency for 10% Figure 5. Optimal Velocity versus “true veloc-
noise. ity”. 10% Noise.

Time Signals Acc. Noise=10 % Disp. Noise=10 %
T T T T T

—— Integrated Acceleration
—o— True Velocity

0.05

VELOCITY [mis]

e
W

L L L I I L I L I
1.03 1.04 1.05 1.06 1.07 1.08 1.09 11 111 112

TIME [s]
0.05 T T T T T T
— " " T T —+— Differentiated Displacement|
2 T 1 T —e— True Velocity
E I +
A oS T
£ W Ry A o |-
o R £
9 - ¥
w
>

Loy 1 J
1 ! 1

. . . I . . . . .
103 104 105 106 107 1.08 1.09 11 111 112

TIME [s]
T
~—+— Optimum Velocity
—e— True Velocity
28 e Ry R

VELOCITY [m/s]

-0.05

I I I I I I | |
1.03 1.04 1.05 1.06 1.07 1.08 1.09 11 111 112
TIME [s]

Figure 6. Time domain reconstruction of signals. 10% Noise.

wing shape, supported with a cantilever connection, istegddy an electromagnetic shaker
with broad band noise. The response, near the tip of the wsragquired using a non-contact
displacement transducer, an accelerometer and a lasemaier. The displacement transducer
Is located to the rear of the wing with the same coordinatekeaccelerometer, and the laser
vibromater reflects off the accelerometer housing. Thisipetnsures that each sensor records
the motion of the same point of the wing.

Figure9 shows the spectra from the three transducers. It shows teenhcut-off fre-
quency, below which the displacement only is used. As atreétihe employment of the algo-
rithm, the optimal velocity estimate is seen, in figl@ to be a great improvement on either
the integrated acceleration signal or the differentiaisgldcement signal.

4. CONCLUSIONS

A simple algorithm has been presented which can produceoaityekignal when it is not pos-
sible to do so directly by the use of a dedicated transducedisplacement and an acceleration
signal are available, then by employing simple calculustéchnique will use the best qualities

6
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Figure 8. Experiemtal schematic. The accelerometer and displacemedtirarsare located at opposite
sides of the wing at the same position. The laser vibrometer reflects off¢besmmeter housing.
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Figure 9. Choice of cut-off frequency for experimental data.
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Figure 10. Time domain velocity reconstruction for the experimental data.

of each to form a velocity signal, which, in an experimentalisnment will be more accurate
than if it had been determined from only either acceleradiodisplacement signals.
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