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Abstract

An algorithm is developed which takes advantage of the positive characteristics of inte-
gration and differentiation operations which can produce an optimal time-domain estimate of
a velocity signal when a displacement and an acceleration signal are measurable. Simulations
are carried out with Matlab where synthetic data is generated through solving the equations
of motion of a multi-degree of freedom vibrating system. Thevelocity optimisation technique
for velocity estimation is applied to the acceleration and displacement signals and the result is
compared to the true velocity signal. A parametric analysisis carried out on the technique, as
a function of extraneous noise on the simulated signals, as well as the integration and differen-
tiation operator employed. Based on the results of the simulations, an experiment is performed
where a reconstructed velocity is compared to a velocity signal measured directly using a laser
vibrometer.

1. INTRODUCTION

Modern experimental identification techniques, although varying in algorithm, generally require
high quality excitation and response signals - see Rice & Fitzpatrick [1], for a representative
account. These signal; force, displacement, accelerationetc., should ideally be acquired directly
from their respective transducers. However, due to constraints in size or budget, this is not
always possible and quite often it is necessary to transformsignals by the use of differentiation
or integration algorithms, whether in the time or the frequency domain. These differentiation
and integration operators introduce errors into the transformed signals when there is extraneous
noise present, which is usually the case. Specifically, noise is amplified with a bias towards high
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frequencies for a differentiated signal and low frequencies for an integrated signal.
This being recognized as a significant problem by both researchers and field-engineers, it

is somewhat surprising to notice the lack of attention it receives by the community dealing with
system identification, at least in the open literature. Nevertheless, if not explicitly, this issue can
often be perceived in the background of experimental identification papers - see, for instance,
Richard et al. [2] or Zhao et al. [3].

Basically, the differentiation of a signal in the frequency domain is achieved by multiply-
ing the Fourier transform of the time history byiω. Similarly the integration can be determined
by dividing byiω (taking symmetrical properties of the FFT into account). Ifnoise is contained
in the original time histories then it also will be multiplied or divided byiω. Due to this, for the
case of differentiation, the corruptive influence of noise will increase with frequency whereas
for integration it will decrease. Hence differentiated displacement signals will typically exhibit
undue high-frequency energy, while integrated acceleration signals will display unacceptable
low-frequency excursions, both of them clearly unphysical. This algorithm uses both estimates
of velocity from integrated acceleration and differentiated displacement and combines the more
accurate regions of both to produce an optimum velocity signal. Being based on a frequency-
domain criterion, the method proposed here is aimed at post-processing of experimental signals
for off-line identification purposes and is thus not suited for real-time control implementations.

1.1. Basic Algorithm for Velocity Reconstruction

Consider any data recordx(t) of total lengthTr that is stationary with zero mean (µx = 0). Let
the record be divided intond contiguous segments, each of lengthT . Each segment ofx(t) is
termedxi(t), wherei = 1, 2, . . . , nd. In digital terms, each record segmentxi(t), is represented
by N data values{xin}, with n = 0, 1, 2, . . . , N − 1. Given this definition for digitised signals
(the sampled acceleration and displacement signals for example), a discrete, finite, single sided,
autospectral density function estimate for any signalx(t) may be written as

Ĝxx(fk) =
2

ndN∆t

nd
∑

i=1

|Xi(fk)|
2 k = 0, 1, . . . ,

N

2
(1)

Figure1 shows a block diagram of the basic algorithm. The noisy displacement and ac-
celeration signals, whether simulated or experimental, are differenciated and integrated respec-
tively. Averaged autospectra are calculated from these signals using a sufficiently high number
of averages and ensuring an adequate frequency resolution.The presence of noise is assumed
to increase the energy in the signal, and so, by comparing thetwo spectra, a cut off frequency
(fcut) is determined which chooses the sections of the two which have the lowest energy. Based
on this cut-off frequency (and corresponding bin number), the FFTs of the full length displace-
ment and acceleration signals are filtered in the frequency domain. The filtering is simply a case
of multiplying the unwanted Fourier coefficients by zero, taking the symmetrical properties of
the FFTs into account. The two filtered FFTs are added and by performing an inverse FFT
operation, the optimum estimate of the velocity signal in the time domain may be obtained.

1.2. Variant on the Basic Algorithm

This is very similar to the previous method but instead of picking a single cut-off frequency, the
two power spectra are compared frequency by frequency for the one with the least energy and
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Figure 1. Block Diagram of Optimal Velocity Algorithm

the corresponding FFT’s are combined based on this. Although mentioned, this variant of the
basic algorithm will not be further explored here.

2. NUMERICAL SIMULATIONS

2.1. Test Problem

Using MATLAB, synthetic data was generated to simulate a linear, two degree of freedom sys-
tem. This simple oscillator had the characteristics of bothmasses being equal to 1 Kg, natural
frequencies being 10Hz and 200Hz, and damping being set at each dashpot in order to ob-
tain modal damping values of 5% and 1% respectively. This system was excited with a single
random force with a white noise excitation spectrum.

The signals, (excitation and response), could have uncorrelated, gaussian noise added be-
fore beginning the algorithm. The objective was to use the noisy displacement and acceleration
signals to solve for velocity which could then be compared tothe “true” velocity produced by
the generator. Noise was added to each of the signals using the following equation,

x(t) +
[(

σx

n

100

)

r(t)
]

(2)

where n is the noise in percent and r(t) is a random signal of normalised standard deviation. The
three signals of interest are shown in figure2.

2.2. Differentiation and Integration Operators

For this paper, it should be noted that all differentiation and integration was done in the time
domain. However frequency domain techniques are availablewhich eliminate frequency de-
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Figure 2. Response signals for simulated data. No noise case.

pendent biases on the operators which can be present even in the absence of noise. In order to
highlight these frequency dependent biases, two (time domain) integration and differentiation
algorithms were implemented and the results of their implementation are to be seen in figures
3(a) and3(b). No noise has been added in these two cases. For the case of diffentiation, it is
seen that for both of the algorithms implemented, the operators tend to bias the result down-
wards at higher frequencies. The better performing first algorithm calculated simply according
to the finite difference scheme

f ′

1−2 =
f1 − f0

h
(3)

is chosen subsequently over the “three-point formulas” algorithm of the second technique. This
downward bias of the operators invalidates the assumption that noise adds energy to the spec-
trum of the signal, as a small amount of additional noise may result in a differentiated signal
with less energy at high frequencies than the true signal. However, it takes only 0.5% of added
noise to counteract the downward bias and so, for real signals, this bias may be ignored.

For the integrated signals, the rectangular rule

J =

∫

b

a

f(x)dx ≈ h[f(x1) + f(x2) + . . . + f(xn)]

(

h =
b − a

n

)

(4)

results in practicaly no bias in the integrated signal, and so is the preferred algorithm over the
trapezoidal rule.

2.3. Parametric Analysis

In order to study the algorithms performance, a noise sensitivity analysis was performed on
the signals. Tests were carried out with equal and differentpercentages of noise superimposed
on the acceleration and displacement signals. Both scenarios are possible in an experimental
environment. An error was calculated between the noisy reconstructed velocity and the true
generated velocity in each case according to

Error =
σ[true velocity(t)−processed velocity(t)]

σ[true velocity(t)]
∗ 100 (5)

Table 1 shows the results for these tests. The table is divided into three main blocks where
they show the error between the true velocity and the integrated acceleration, differentiated
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(a) Differentiated displacement versus true velocity.
Calculated from, 1: the 2-point finite difference scheme,
2: the 3-point finite difference scheme.
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(b) Integrated acceleration versus true velocity. Calcu-
lated from, 1: the rectangular summation rule, 2: the
trapezoidal rule.

Figure 3. Comparison between different integration and differentiation algorithms. Results are compared
with “true” simulated velocity.

displacement and optimal velocity respectively, each as a function of noise.
From the table it is seen that for all combinations of noise level the optimal velocity

algorithm results in the lowest error. However, it is also seen due to the operator bias, that even
with zero noise, a 27% error results. Once there is a realistic level of noise present in the signals,
it is seen how the algorithm far outperforms the sole implementation of either the integration or
differentiation algorithms, with≈ 30% error for most noise levels.

Figure4 illustrates how the cut-off frequency is chosen for the caseof 10% noise, with
figure5 comparing the optimal velocity with the true noiseless velocity. The large dc component
in the integrated acceleration due to low frequency amplification is the principle cause of its
error whereas it is the high frequency region where the differentiated displacement fails. Both
of these characteristics are seen in the time domain reconstruction of the signals in figure6.

Table 1. Sensitivity analysis to noise. Synthetic data.

Percentage Noise Error From True Velocity

A D Integrated accelerationDifferentiated displacementOptimal Velocity Estimation (Basic Algorithm)

0 0 28 28 27

1 1 106 34 28

2 2 206 49 28

5 5 510 105 28

10 10 1020 205 29

20 20 2038 406 34

50 50 5095 1014 59

0 10 28 205 28

10 0 1019 28 27

5 10 510 205 31

10 5 1019 105 29

3. EXPERIMENTAL ANALYSIS

A useful application for the technique is in the modal analysis of continuous systems. Figure7
shows a laboratory rig used to experimentally examine the modes of vibration of a model aero-
plane wing. The rig was modified as indicated in the schematicof figure8. A 2-D aluminium

5



ICSV14 • 9–12 July 2007 • Cairns • Australia

0 50 100 150 200 250
10

−12

10
−10

10
−8

10
−6

10
−4

P
S

D
 V

el
oc

ity
 [(

m
/s

)2 /H
z]

Frequency [Hz]

Velocity Spectra          Acc. Noise=10 %   Disp. Noise=10 %

Integrated Acceleration
Differentiated Displacement
True Velocity

Figure 4. Choice of cut-off frequency for 10%
noise.
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Figure 5. Optimal Velocity versus “true veloc-
ity”. 10% Noise.
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Figure 6. Time domain reconstruction of signals. 10% Noise.

wing shape, supported with a cantilever connection, is excited by an electromagnetic shaker
with broad band noise. The response, near the tip of the wing,is acquired using a non-contact
displacement transducer, an accelerometer and a laser vibrometer. The displacement transducer
is located to the rear of the wing with the same coordinates asthe accelerometer, and the laser
vibromater reflects off the accelerometer housing. This set-up ensures that each sensor records
the motion of the same point of the wing.

Figure9 shows the spectra from the three transducers. It shows the chosen cut-off fre-
quency, below which the displacement only is used. As a result of the employment of the algo-
rithm, the optimal velocity estimate is seen, in figure10, to be a great improvement on either
the integrated acceleration signal or the differentiated displacement signal.

4. CONCLUSIONS

A simple algorithm has been presented which can produce a velocity signal when it is not pos-
sible to do so directly by the use of a dedicated transducer. If a displacement and an acceleration
signal are available, then by employing simple calculus, the technique will use the best qualities
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Figure 7. Experimental Set-up.

Figure 8. Experiemtal schematic. The accelerometer and displacement transducers are located at opposite
sides of the wing at the same position. The laser vibrometer reflects off the accelerometer housing.
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Figure 9. Choice of cut-off frequency for experimental data.
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Figure 10. Time domain velocity reconstruction for the experimental data.

of each to form a velocity signal, which, in an experimental environment will be more accurate
than if it had been determined from only either accelerationor displacement signals.

REFERENCES

[1] H. J. Rice and J. A. Fitzpatrick , “A procedure for the identification oflinear and non-linear multi-
degree-of-freedom systems”,Journal of Sound and Vibration 149, 397-411 (1991).

[2] C. Richard, M. R. Cutkosky and K. MacLean, “Friction Identificationfor Haptic Display”,Pro-
ceedings of the ASME IMECE , 14-19 November 1999, Nashville, USA.

[3] X. Zhao, Y.L. Xu, J. Chen and J. Li, “Hybrid identification method for multi-story buildings
with unknown ground motion: Experimental investigation”,Engineering Structures 27, 1234-1247
(2005).

8


	Introduction
	Basic Algorithm for Velocity Reconstruction
	Variant on the Basic Algorithm

	Numerical Simulations
	Test Problem
	Differentiation and Integration Operators
	Parametric Analysis

	Experimental Analysis
	Conclusions

