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Abstract

The 1/2-order subharmonic resonance occurs when the rotational speed is in the vicinity
of twice the natural frequency. The Jeffcott rotor used basically and widely in the analysis of
resonancies, is a two-degree-of-freedom model with a disk at the midspan of a massless-shaft.
For the above condition on the rotational speed, we clarify the nonlinear characteristics of the
resonance in a horizontally supported Jeffcott rotor. Applying the method of multiple scales, we
directly derive the amplitude equations for the horizontal direction and vertical direction and
depict the relationship between the rotational speed and the response amplitude. Furthermore,
experiments are performed and the results are compared with the theoretical ones.

1. INTRODUCTION

Rotating machineries, such as steam turbines, gas turbines, motors and so on, often become
the main source of vibration. When the machineries are operated at high velocities with the
developments in science, occurrence of nonlinear oscillations can be easily predicted. When the
rotational speed is in the vicinity of twice the natural frequency, the 1/2-order subharmonic res-
onance occurs. The Jeffcott rotor used basically and widely in the analysis of resonancies, is a
two-degree-of-freedom model with a disk at the midspan of a massless-shaft [1][2]. Ishida and
Inoue investigated nonlinear phenomena in the neighborhood of the rotational speed of twice
the major critical speed [3]. In a horizontally supported Jeffcott rotor, the effect of gravity influ-
ences the rotor of whirling motion. The equilibrium position differs from the bearing centerline
by the static displacement due to gravity. The restoring force of the shaft has nonlinearity due to
the extension of the shaft center line and angular clearance of bearing. We consider the asym-
metrical nonlinearity of the gravity and the restoring force. For the above condition, we clarify
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the nonlinear characteristics of the resonance. We apply the method of multiple scales, which is
widely applied to analysis of reciprocation, to analysis of whirling motion. We directly derive
the amplitude equations for the horizontal and vertical direction and depict the relationship be-
tween the rotational speed and the response amplitude. Furthermore, experiments are performed
and the results are compared with the theoretical ones.

2. ANALYTICAL MODEL AND EQUATION OF MOTION
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Figure 1.Analytical model

The analytical model of a horizontally supported Jeffcott rotor is shown in Fig.1. A rigid
disk is mounted at the mid-span of a massless elastic shaft which is supported at both ends with
ball bearings. We introduce the static coordinate system as shown in Fig.1(b). The origin O of
the coordinate system O-xy coincides with the bearing centerline connecting the centers of the
right and left bearings. The disk of the rotor has massm and its center of gravity G deviates
slightly ed from the geometrical center M. Furthermore, assuming the cubic nonlinearity in the
stiffness of the shaft and the bearings of the supportiong points, which is the most fundamental
symmetric nonlinearity [4] , the equations of motion of the rotor system can be written as
follows:

m
d2x

dt2
+ cd

dx

dt
+ kx + βd(x

2 + y2)x = medω
2 cosωt

m
d2y

dt2
+ cd

dy

dt
+ ky + βd(x

2 + y2)y = medω
2 sinωt − mgd,

whereω, cd, k, βd, andgd are the angular velocity of the shaft, the viscous damping coefficient,
the linear spring constant of the elastic shaft, the cubic nonlinear spring constant, and the grav-
ity acceleration, respectively. The equilibrium position differs from the bearing centerline by
the static displacementyst due to the gravity. Denoting the equilibrium point byy = yst and
considering Eq. (2), we conclude that the equilibrium positions satisfies the equation

kyst + βdy
3
st = −mg. (1)

Substitutingy = yst + ∆y into Eqs. (2) and (2), we obtain equations of motion with respect
to x andy. All lengths are nondimensionalized using the static displacementyst and the time
is nondimensionalized usingT =

√
(k + βdyst

2)/m. We denote the resulting dimensionless
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quantities corresponding tox, y, andt byx∗, y∗, andt∗, respectively. We introduce the following
dimensionless parameters:

e =
ed

yst

, c =
cd√

m(k + βdyst
2)

, 1 + ω− =

√
k + 3βdyst

2

k + βdy2
st

, β =
βdyst

2

k + βdy2
st

, ν =
ω

T
. (2)

In this way, we can obtain the following dimensionless equations of motion.

ẍ + cẋ + x + 2βx∆y + βx3 + βx∆y2 = eν2 cosνt (3)

∆ÿ + c∆ẏ + (1 + ω−)2∆y + βx2 + 3β∆y2 + βx2∆y + β∆y3 = eν2 sinνt, (4)

where (̇ ) represents the derivative with respect tot∗.

3. THEORETICAL ANALYSIS

In this section, we dinote averaged equations from the dimensionless equations of motion, Eqs.
(3) and (4), by using the method of multiple scales [5] . As a result, the approximate solutions
are expressed as follows:

x = ax cos(
ν

2
t + φx) + O(ϵ2) + O(ϵ3) (5)

∆y = ay cos(
ν

2
t + φy) + O(ϵ2) + O(ϵ3). (6)

where the time variations ofax, ay, φx, andφy are governed with the following equations:

d

dt
ax =

1

2
{−cax + X3axay

2 sin(−2φx + 2φy) − 4fax cos(2φx) + 4fay sin(−φx − φy)} (7)

ax
d

dt
φx = −1

2
{σax + X1ax

3 + X2axay
2 + X3axay

2 cos(−2φx + 2φy)

−4fax sin(−2φx) + 4fay cos(−φx − φy)} (8)

d

dt
ay =

1

2
{−cay + Y3ax

2ay sin(2φx − 2φx) + 4fax sin(−φx − φy) − 12fay cos(2φy)} (9)

ay
d

dt
φy = −1

2
{σay − 2ω̂−ax + Y1ay

3 + Y2ax
2ay + Y3ax

2ay cos(2φx − 2φy)

+4fax sin(−φx − φy) + 4fay cos(2φy)}, (10)

where

X1 =
10

3
β2 − 3β,X2 =

44

3
β2 − 2β,X3 = 2β2 − β,

Y1 = 30β2 − 3β, Y2 =
44

3
β2 − 2β, Y3 = 2β2 − β, f =

βê

ν2 − 1
. (11)
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Because the solutions that amplitude equal 0 have indefiniteness phase angleφx andφy, we
analyze the equation in Cartesian coordinate as follows:

axe
iφx = axr + iaxi (12)

aye
iφy = ayr + iayi, (13)

whereaxr, axi, ayr andayi are real number and imaginary number in horizontal direction and
vertical direction. The time variations ofaxr, axi, ayr andayi are governed with the following
equations:

d

dt
axr =

1

2
{σaxi − caxr + X1(axr

2 + axi
2)axi + X2(ayr

2 + ayi
2)axi

+X3(2axrayrayi − axiayr
2 + axiayr

2) − 4faxr − 4fayi} (14)

d

dt
axi = −1

2
{σaxr + caxi + X1(axr

2 + axi
2)axr + X2(ayr

2 + ayi
2)axr

+X3(2axiayrayi + axrayr
2 − axrayi

2) − 4faxr − 4fayi} (15)

d

dt
ayr =

1

2
{σayi − cayr − 2ω̂−ayi + Y1(ayr

2 + ayi
2)ayi + Y2(axr

2 + axi
2)ayi

+Y3(2axraxiayr − axi
2ayi + axi

2ayi) − 4faxi − 12fayr} (16)

d

dt
ayi = −1

2
{σayr + cayi − 2ω̂−ayr + Y1(ayr

2 + ayi
2)ayr + Y2(axr

2 + axi
2)ayr

+Y3(2axraxiayi + axr
2ayr − axi

2ayr) − 4faxr − 12fayi}. (17)

From Eqs. (7)-(10) and Eqs. (14)-(17), we have frequency response curves for x and y direc-
tions, as Fig.2, wheree = 3.6 × 10−2, c = 4.0 × 10−3, β = 1.2 × 10−1, ω̂− = 1.1 × 10−1.
The solid and dashed lines denote stable and unstable steady state amplitude, respectively. In
thex direction, the trivial equilibrium point changes to unstable from stable in the vicinity of
twice the natural frequency. With increasing the rotational speed, the amplitude becomes bigger.
Also in they direction, we observe oscillation together with the excitation in thex direction.
But the amplitude is smaller than that of thex direction. The symbol of● are simulation re-
sults of applying Runge-Kutta method to Eqs. (3) and (4). The results of the theoretical analysis
corresponds with the results of the simulations.
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Figure 2.Frequency response curve
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4. EXPERIMENT

We show experimental setup in Fig.3. The span and diameter of the shaft are12mm and700mm,
respectively. The mass and diameter of the disk are8.21kg and0.3mm, respectively. Displace-
ment of the disk inx andy directions are measured by laser sensors. Figure4 shows experimen-
tally obtained frequency response curves. As theoretically predicted, the resonance is generated
in x direction. On the other hand iny direction, the resonance is bigger than analytical result.
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Figure 3.Experimental setup
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Figure 4.Experimental frequency response curve

5. SUMMARY

In this papare, we analyzed equations of motion about 1/2-order subharmonic resonance in a
horizontally supported Jeffcott rotor considering the cubic nonlinearity. We theoretically clar-
ified the vibration characteristic by frequency response curves. And we compared analytical
results and experimental results. We summarize conclusions below.
(1) By using the method of multiple scales, we analyzed nonlinear dynamics of a horizontally
supported Jeffcott rotor, and we obtained the averaged equations of thex direction and they
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direction.
(2) We theoretically predicted occurrence of 1/2-Order Subharmonic Resonance due to the non-
linearity and the gravity by frequency response curves.
(3) We confirmed 1/2-Order Subharmonic Resonance experimentaly and compared with the
theoretical ones. The quantitative difference exist from frequency respoce curve theoretically
depicted.
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