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Abstract 
 
From experiments it is well-known that the vibration response of complicated, built-up sys-
tems often show more damping than structural losses in the components can account for. The 
“Theory of structural fuzzy” is intended for modelling of such high damping induced by reso-
nant structures. When modelling a complicated system, it is divided into a deterministic mas-
ter structure and one or more fuzzy substructures, which are known only in some statistical 
sense. In the present paper the theory of fuzzy structures is outlined and a special method of 
including spatial memory in the modelling of fuzzy substructures with continuous boundaries 
is examined. The high damping effect of the structural fuzzy is demonstrated by a numerical 
model of a simple master structure with fuzzy attachments. It is shown that the introduction of 
spatial memory reduces the damping effect of the fuzzy and may cause the resonance fre-
quencies of the complex system to increase. 

1. INTRODUCTION 

Many complicated systems of practical interest consist basically of an outer shell- or a box-
like master structure and a complicated internal structure. Examples of such structures vary-
ing from small to large sizes comprise hearing aids, machines, aircrafts and ship hulls. The 
outer master structure is often well defined and its vibration can be predicted using conven-
tional methods. In contrast, the dynamic properties of the internals are only partly known and 
therefore they have to be modelled by using an alternative method such as the “Fuzzy struc-
ture theory” [1]-[4]. It is commonly known from experiments that vibrations of the master in a 
complicated system often is more damped than its damping lossfactor accounts for. Fuzzy 
structure theory is intended for an overall and simple prediction of the damped vibration of 
the master, and the theory considers the internals as one or more independent “fuzzy substruc-
tures”, which are known in some statistical sense only.  
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In some complex systems the fuzzy substructures are attached to the master through a 
continuous boundary. This implies that spatial coupling within the fuzzy can only be ne-
glected up to a certain frequency. Above this frequency the displacement of the continuous 
junctions is varying significantly with position due to vibration in the master structure, and 
therefore spatial coupling has to be accounted for. The present paper addresses the problem of 
including spatial coupling in the modelling of structural fuzzy. The starting point is taken in 
Soize’s fuzzy law II [2] concerning fuzzy substructures with continuous boundaries, and this 
theory is simplified using an approach like that of Pierce, Sparrow and Russell [3], and Stras-
berg and Feit [4]. 

Figure 1 shows a complicated system comprising of three different fuzzy substructures 
attached to a master. Time harmonic force tiFe ω  of angular frequency fπω 2=  excites the 
master and generates vibration in the 
whole system. At lower frequencies 
the master structure vibrates as a rigid 
body (see Fig. 1a), and the boundary 
displacement of the substructures is 
almost constant. This entails that the 
spatial coupling within each substruc-
ture has no significant effect on the 
response of the system. Now, increas-
ing the excitation frequency intro-
duces wave motion in the master 
structure. When the wavelength of the 
master becomes comparable with the 
dimensions of the fuzzy connection 
area then the spatial coupling begins 
to take effect. This is the case in Fig. 
1b where the boundary displacement 
of substructure 3 is varying whereas those of substructures 1 and 2 are nearly constant. In Fig. 
1c the frequency has been increased further and the boundary displacements of both substruc-
tures 1 and 3 are varying, while the boundary displacement of substructure 2 remains close to 
constant.  

Literature published on fuzzy structure modelling is extensive, but not many authors 
have addressed the subject of structural fuzzy with a continuous boundary. In 1993 Soize [2] 
introduced a method for including so-called spatial memory in the modelling of structural 
fuzzy and this is based on Ref. [5] where numerical examples involving fuzzy structures with 
continuous boundaries were presented.  

In the following Section structural fuzzy theory will be explained briefly and the incor-
poration of spatial memory will be investigated. A numerical modelling example, which illus-
trates the effect of spatial memory within the fuzzy follows in Section 3. 

2. OUTLINE OF STRUCTURAL FUZZY THEORY 

The purpose of the fuzzy structure theory is to model the overall vibration response of a mas-
ter, which is attached to one or more resonant substructures. When such a fuzzy substructure 
of multiple resonaters is attached to the master within a small area of virtually constant dis-
placement, then the coupling forces eliminate one another and coupling can be neglected. This 
case of absent spatial coupling is exemplified in the following subsection. 
 

Figure 1. Three different fuzzy substructures attached to 
a master structure undergoing: a) rigid body motion, b) 
low freq. wave motion and c) high freq. wave motion. 
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2.1 Structural fuzzy without spatial memory 

Fuzzy structure theory considers a single fuzzy substructure as comprising of many simple 
oscillators resonating at different frequencies and being attached to the master at their base. 
Consider a fuzzy substructure modelled by N  simple oscillators that is attached to an area A  
of the master structure. An expression for the boundary impedance fuzzyz  of the substructure 
can be derived by assuming that the n ’th simple oscillator of the fuzzy has the mass nM  and 
the complex spring stiffness )1( ηiss nn += , where η  is the lossfactor.  Introducing the oscil-

lator’s resonance frequency )2/(/, πnnnr Msf = , its impedance nnn vFZ /=  at the base  
yields [4] 
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Fig. 2 shows this impedance of the oscillator 
in a normalized form for three different values 
of η . Below and above its resonance fre-
quency the oscillator is mass and spring con-
trolled, respectively. Further, at resonance of 
the oscillator, where the impedance is very 
large and almost purely real, it will strongly 
oppose any movements of its base. It is this 
particular feature of the oscillator, which can 
imitate the damping effect of the fuzzy sub-
structure. 

Generally, the oscillators of a fuzzy sub-
structure have different masses and natural 
frequencies and they are attached randomly to 
the master structure within the considered 
fuzzy connection area. Also, the mass of all 
the oscillators equals the mass of the fuzzy 

substructure ∑
=

=
N

n
nfuzzy MM

1
. Below a certain 

frequency, say lowerrf , , the oscillators will all be mass controlled. By increasing the frequency 
gradually from lowerrf ,  to an upper limit, say upperrf , , the oscillators will resonate one by one. 
Now, at each frequency within this “resonant” frequency band upperrrlowerr fff ,, ≤≤  at least 
one oscillator will be close to its base anti-resonance and will oppose the motion of the mas-
ter. If the oscillators are attached close to one another within the area A , which has a nearly 
constant boundary displacement, then the effective boundary impedance of all the oscillators, 

fuzzyz , can be approximated as the sum of each oscillator’s impedance nZ  divided by the at-
tachment area A : 
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This boundary impedance, however, requires specific knowledge about the properties of each 
oscillator and it is therefore conveniently replaced by an asymptotic and smoothed version. 
This is obtained by considering infinitely many oscillators resonating within 

upperrrlowerr fff ,, ≤≤  and with a total mass fuzzyM  [3]. The smoothed impedance yields  

Figure 2. Impedance Zn  normalized:  
η=0.005 ( ), η=0.01 ( ) and η=0.02 ( ).  
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where rrfuzzy dffm )(  is the total mass resonating between the frequency rf  and rr dff +  and 
the total mass of the substructure is  

rr

f

f fuzzyfuzzy dffmM upper

lower

)(∫= .      (4) 

The damping effect of the fuzzy substructure is mainly governed by the frequency dependent 
resonating mass )( rfuzzy fm [3]. Methods to find this parameter were suggested by Soize [6] 
and Pierce [7], and different prototype distributions were proposed by Pierce [3] and Stras-
berg [4]. 
 

2.2 Structural fuzzy with spatial memory 

When the fuzzy substructure is attached to the master through an area for which the boundary 
displacement cannot be considered constant, then coupling within the fuzzy has to be taken 
into account. Soize [2] introduced a method to include such “spatial memory” into the model-
ling of the fuzzy boundary impedance; for ease of ref-
erence, the basics of this method will be given in the 
following.  

Consider a fuzzy substructure connected to the 
master through a continuous boundary. A fuzzy sub-
structure is generally attached to the master within an 
area, but for the sake of simplicity we shall consider a 
fuzzy attached to the master through a one-dimensional 
boundary of length fuzzyL . Soize incorporates spatial 
memory in the fuzzy by introducing the “spatial oscilla-
tor” shown in Fig. 3a. The n’th spatial oscillator of a 
fuzzy substructure consists of a point mass of weight 

fuzzyn LM /  placed at position 1x . The point mass is sup-
ported by springs of stiffness density ns ,ε  that are at-
tached to the master structure at different positions 

[ ]εε +−∈ 11 , xxx .  The width of the distributed springs 
(or spatial memory) is ε2  and the stiffness density is 
given as 

),()1)(/(),()/( 1
2
,1, xxgiLMxxgLss fuzzynrnfuzzynn εεε ηω +== .    (5) 

Here ),( 1 xxgε  is an even function of 1x  and ),( 1 xxgε  is positive-valued and has an area of 1. 
For a one-dimensional spatial memory Soize suggests the function ),( 1 xxgε  as the triangular 
distribution shown in Fig. 3b. This is determined as 

[ ]εεε ε
ε

+−

−−
=
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1
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where [ ]εε +− 11 ,1 xx  is a function which is equal to 1 for [ ]εε +−∈ 11 , xxx  and 0 elsewhere. Since 
the area of ),( 1 xxgε  is 1 the oscillator in Fig. 3a has the same natural frequency nrf ,  as the 
simple oscillator with mass nM  and stiffness ns .  

Figure 3. Fuzzy oscillator with spatial 
coupling: a) Oscillator attached to 
boundary and b) stiffness density dis-
tribution of the oscillator springs. 
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Next, consider an infinite number of the n’th oscillator distributed over the fuzzy 
boundary, so that each location is associated with a point mass fuzzyn LM /  as illustrated in Fig. 
4. The point masses can vibrate inde-
pendently whereas the springs overlap 
spatially at the connection boundary. 
These infinitely many identical oscilla-
tors constitute the n’th contribution to 
the total boundary impedance of the 
homogeneous fuzzy substructure. Fig. 
4a illustrates the case with a large spatial 
memory since stiffness distributions 
overlap significantly. In Fig. 4b the 
springs overlap less than in Fig 4a be-
cause ε  is smaller. Finally, in Fig. 4c 
the spatial memory is zero since 0→ε , 
and the spatial stiffnesses become sim-
ple springs. The contribution to the force 
at 2x  due to the n’th oscillator )( 2, xf nε  
is found as  [2] 

dxxvxxzxf
fuzzyL nfuzzyn ∫ −=

 2,,2, )()()( εε       (7) 

where nfuzzyz ,,ε  is the boundary impedance associated with the n’th oscillator. nfuzzyz ,,ε  can be 
derived as 
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where ∗  means convolution. By analogy to the smoothed impedance in eq. (3) the total force 
density applied to the connection boundary at 2x  due to all oscillators yields 
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A structural fuzzy constructed in this manner is homogenous because the boundary imped-
ance due to all oscillators, ε,fuzzyz , only depends on the distance between x  and 2x . If 0→ε , 
then eq. (8) reduces to the boundary impedance for structural fuzzy without spatial memory as 
given in eq. (3).  

A numerical implementation of the fuzzy boundary impedance ε,fuzzyz  is unfortunately 
rather complicated due to its non-local nature. This requires for instance the use a finite ele-
ment model with special fuzzy elements. As mentioned earlier, the main purpose of the fuzzy 
structure theory is to serve as a simple modelling tool. Therefore Soize introduced an equiva-
lent local oscillator, which can model the fuzzy with spatial memory in a simpler way. For the 
n’th equivalent oscillator this impedance nnnequ vFZ /, =  becomes 
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Figure 4. Structural fuzzy attached to the master with: 
a) high spatial memory, b) little spatial memory and c) 
no spatial memory. 
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Here ] ]1 ,0∈α  is the so-called 
equivalent coupling factor. nequZ ,  
is shown in Fig. 5 for different val-
ues of α . As indicated in the fig-
ure, the equivalent oscillator repre-
sents a simple oscillator with 
spring stiffness 1s  where the mass 
has been grounded by a second 
spring with stiffness 2s . The rela-
tionship between the impedance in 
eq. (10) and the impedance of the 
grounded oscillator ngroundZ ,  in Fig. 
5 is α/,, ngroundnequ ZZ =  where 

)/( 211 sss +=α . Note that 1→α  
when 02 →s  and nequZ ,  approaches the impedance of a simple oscillator. By analogy to eq. 
(3) a smoothed version of the equivalent boundary impedance equfuzzyz , of a structural fuzzy 
with spatial memory can be determined as 
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Soize states that it is not self-evident that the 
equivalent oscillator can model correctly a struc-
tural fuzzy with spatial memory. Perhaps one can 
imagine that the equivalent oscillator is capable of 
representing the direct impedance of eq. (8). How-
ever, coupling forces to other contact positions are 
ignored, due to its local nature. Therefore α  has to 
be chosen carefully. Finding α  requires matching 
of numerical simulations using the expressions in 
eq. (8) and eq. (10) frequency by frequency. This 
has been done by Soize [2] and by transforming his 
data, α  can be determined as function of λε /2  as 
shown in Fig. 6. Here λ  is the wavelength of vibration in the master structure, which has one-
dimensional wave motion only. The data has been fitted with a 4’th-order polynomial and it 
reveals that a unique relationship exist between α  and λε /2 .  

3. BEAM MASTER STRUCTURE WITH STRUCTURAL FUZZY 

In the following, a numerical example is presented. This illustrates the effect of structural 
fuzzy with and without spatial memory. The Finite Element Method [8] has been used to 
solve the vibration response of a simple Bernoulli-Euler beam, being free in space and con-
sidered as the master. A fuzzy substructure is attached on the whole length L  of the beam, so 

LLfuzzy = . The lossfactor of the beam is set to 0.005, whereas the lossfactor of the fuzzy oscil-
lator springs has been chosen to 0.01. In this example the total mass of the fuzzy substructure 

fuzzyM  is taken to be one-tenth of the beam mass. The resonating mass per frequency 
)( rfuzzy fm  is chosen to be decreasing with frequency such that rrfuzzy fMfm /)( 0=  where 

Figure 6. Variation of α. Data 
computed from results in Ref. [2]. 
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)/ln( ,,0 upperrlowerrfuzzy ffMM = . With this choice of mass distribution the boundary impedance 
of the fuzzy without spatial memory, eq. (3), becomes 
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Further, α  is assumed to be constant with frequency implying that λε /2  is constant and that 
the spatial memory ε2  of the fuzzy decreases with frequency. For a constant value of α  the 
boundary impedance of the fuzzy with spatial memory, eq. (10), becomes 
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Computed results are plotted in Fig. 7 as a function of the beam’s non-dimensional frequency 
Ω  defined as 

h
L

E

212ρω=Ω        (14) 

 
where h  is the beam thick-
ness, and ρ  and E  is the 
density and Young’s 
modulus of the beam mate-
rial, respectively. The oscil-
lators of the fuzzy substruc-
ture are chosen to resonate 
in the inverval 
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Fig. 7a shows the end 
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fuzzy attachments as a ref-
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sponses it is clearly seen 
that the structural fuzzy in-
troduces significant damp-
ing in the master for fre-
quencies 50050 ≤Ω≤ . 
Yet, the damping is most 
significant in the case of no 
spatial coupling ( 1=α ), 
where the system’s reso-
nance peaks are reduced by 
about 22 dB, as opposed to 
17 dB for 05.0=α . The 
structural fuzzy without 
spatial memory adds small 
extra mass to the master and 
therefore the resonances are 
shifted downwards com-
pared to the reference. In 

0

500

1000

R
e(

Z
fu

zz
y,

eq
u),

 N
/m

/s

Figure 7. Flexural vibration of beam without structural fuzzy 
(___ ) and with structural fuzzy for different values of α:  1 
( ), 0.75 ( ), 0.5 ( ) and 0.25 ( ).  
a) End point mobility, b) apparent damping of the fuzzy im-
pedance and c) variation of relative spatial memory 2ε/L.

−80

−60

−40

−20

0

⏐Y
⏐,

 d
B

 r
e 

1 
m

/s
/N

−1

0

1

P
ha

se
/π

0 100 200 300 400 500
0

2

4

6

2ε
/L

, %

Non−dimensional frequency, Ω

a)

b)

c)



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

contrast, the structural fuzzy with spatial memory adds both mass and stiffness to the master 
structure. For the chosen fuzzy this causes the resonance frequencies of the system to in-
crease. Fig. 7b shows the apparent damping )Re( ,equfuzzyz  of the fuzzy boundary impedance 
for four different values of α . It is observed that the damping effect of the fuzzy reduces with 
increasing spatial memory. Further, it is evident that the structural fuzzy introduces only little 
damping in the master for low values of α , where  the fuzzy mainly add stiffness to the mas-
ter. Soize [2] claims that the fuzzy only has a significant damping effect when %5/2 <Lε . 
Fig. 7c shows L/2ε  as a function of Ω , and it is seen that %4/2 ≈Lε  around 50=Ω  for the 
case of 5.0=α . If we consider the mobility in Fig. 7a again it is seen that Soize’s assumption 
is in good agreement with the moderate damping effect occurring around 50=Ω .  

CONCLUSIONS 

Complex systems with partly unknown properties can be modeled by Soize’s fuzzy structure 
theory. Following a brief outline the emphasis is laid on examining a method for including 
spatial memory in the modeling of the structural fuzzy. Numerical simulations with a free-free 
beam as master structure and with an attached structural fuzzy weighing one-tenth of the 
beam show that the system’s resonant response is reduced significantly by the fuzzy attach-
ment. It is found that the simple fuzzy increases the system’s apparent damping by a factor of 
13. However, part of this effect is lost if the fuzzy has spatial memory, as typically will be the 
case towards higher frequencies. Also, it was shown that the spatial memory of the fuzzy in-
creased the stiffness of the master and caused its resonance frequencies to shift upwards in the 
example presented.  
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