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Abstract 
 
An interval factor method is presented to describe the dynamic response of a structure with 
lower and upper bounds applied to its parameters (material properties, geometric dimensions) 
and structural excitations (applied forces). In the interval analysis method, a bounded uncertain 
structural parameter can be described as an interval variable in terms of its lower and upper 
bounds. An interval variable can further be expressed as its mean value multiplied by its 
interval factor. The structural stiffness and mass matrices can then be divided into the product 
of two parts corresponding to the interval factors and the deterministic matrix. Computational 
expressions for the mean value, and lower and upper bounds of the structural dynamic 
responses are then derived by means of mode superposition and interval operations. An 
example of this method is applied to a complex truss structure. The bounded uncertain 
structural physical parameters, geometric dimensions and applied forces of the truss structure 
are considered as interval variables. The effects of these uncertainties on the dynamic 
displacement and stress responses are examined. 

1. INTRODUCTION 

Perturbation methods for the dynamic characteristics and responses of structures such as 
buildings, ships, vehicles, aerospace and offshore structures, that possess uncertainty due to 
variability in their geometric or material parameters and are generally under stochastic 
excitation, is a very significant research field [1-5]. A common approach to problems of 
uncertainty is to model the structural geometric and material parameters as random variables. 
However, probabilistic approaches cannot give reliable results unless sufficient experimental 
data or statistical information is available to validate the assumptions about the joint probability 
densities of the random variables or functions involved. In some cases, only the range of the 
structural parameters can be obtained. In this case, the interval analysis method will be more 
useful as an uncertain structural parameter can be described in terms of an interval variable, 
knowing only its lower and upper bounds.  
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The interval analysis method first appeared in the mid 1960s [6,7]. Using this method, 
linear interval equations, nonlinear interval equations and interval eigenvalue problems have 
been resolved. However, because of the complexity of the algorithms involved, it is difficult to 
apply these methods to practical engineering problems. Recently, the statistical response [8], 
eigenvalues [9] and dynamic responses [10] of structures with uncertain parameters have been 
investigated using interval analysis and matrix perturbation techniques. These perturbation 
methods use a combination of matrix perturbation theory, finite element method and Taylor 
series expansion to obtain the dynamic characteristics of structures with uncertainty. However, 
this method does not necessarily yield a conservative approximation, as the effect of neglecting 
the higher order terms can be significant [11]. 

In this paper, the dynamic responses of structures with uncertainty are investigated based 
on the interval factor method. A truss structure is used to illustrate applications of the method, 
in which structural physical parameters (Young’s modulus and mass density), geometry (length 
and cross-sectional area of bar) and applied forces are considered as interval variables. The 
effects of these uncertainties on the dynamic displacement and stress responses are examined. 

2. STRUCTURAL DYNAMIC RESPONSE ANALYSIS 

Following the finite element formulation, the equation of motion for a structure is given by: 
 

[ ]{ } [ ]{ } [ ]{ } }{ )()()()( tFtuKtuCtuM =++ &&&                                       (1) 
 

where [ ]M , [ ]C  and [ ]K  are the mass, damping and stiffness matrices respectively. { })(tu , 
{ })(tu&  and { })(tu&&  are displacement, velocity and acceleration vectors respectively. }{ )(tF  is the 
load force vector. 

Suppose that there are m  elements in the truss structure under consideration. [ ]K  and 
[ ]M  of a truss structure in global coordinates can be respectively expressed as: 
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where [ ]eK  and [ ]eM  are respectively the stiffness and mass matrices of the eth element. eE , 

eρ , el  and eA  are respectively the Young’s modulus, density, length and cross-sectional area of 
the eth element. [ ]I  is a 6th order identity matrix, [ ]G  is 66×  matrix, where 14411 == gg  and 

14114 −== gg , other elements are zero [12]. [ ]eT  is a transformation matrix that translates the 

local coordinates of the eth element to global coordinates and [ ]TeT is its transpose. By means of 
the mode superposition method [13], the structural displacement response can be expressed as: 
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where the displacement response of jth degree of freedom )(tu j  is: 
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where )(tzi is the displacement response of ith degree of freedom in principal coordinates. iω , 

}{ iφ  and iζ  are ith order natural frequency, mode shape and modal damping of structure, 
respectively. 212 )1( iii ζωω −=′  is the damped natural frequency. Using the relationship 
between node displacement and element stress, the stress response of the eth element in the truss 
structure can be expressed as 

 
}{ [ ] }{ )()( tuBEt eee =σ                             ( me ,...,2,1= )   (7) 

 
where }{ )(tue  is the displacement of the nodal point of the eth element, }{ )(teσ  is the stress 
response of the eth element. [ ]B  is the element’s strain matrix. 

3. INTERVAL NATURAL FREQUENCY AND MODE SHAPE ANALYSIS 
USING THE INTERVAL FACTOR METHOD  

The following structural physical parameters ( eE , eρ ) and the geometric dimensions ( el , eA ) are 
all considered interval variables. As such the Young’s modulus I

eE , mass density I
eρ , length I

eL  
and cross-sectional area I

eA  can be respectively expressed as c
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and I
eA . Furthermore, the interval change ratio values of Young’s modulus, density, 

cross-sectional area and length can be expressed as: 
 

c
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where FEΔ , FρΔ , FAΔ  and FLΔ  are interval change ratio values of I

eE , I
eρ , I

eL and, I
eA .  

From Eqs. (2) and (3) the interval variables of the structural mass and stiffness matrices 
can be obtained in terms of the interval variables of the parameters. Consequently, the structural 
natural frequencies and mode shapes are now also expressed as interval variables. The mean 
value c

iω and maximum width iωΔ  of the natural frequency interval, and the mean value }{ c
iφ  

and maximum width }{ iφΔ  of mode shape interval can be obtained from the following 
expressions: 
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where ∗

iω and { }∗iφ  are respectively the deterministic values of I
iω and }{ I

iφ , which can be 
obtained from the conventional finite element model when c

e
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4. INTERVAL DYNAMIC RESPONSE ANALYSIS 

In this study the structural damping and the applied forces are also considered as interval 
variables. Using the interval factor method, applied forces { })(τIF  can be expressed as 

 
{ })(τIF ={ })(τcF +{ } ΔΔ eF )(τ = { })(τcI

F FF ={ })(τcF + { } ΔΔ eFF c
F )(τ               (13) 

 
where ]1,1[−=Δe . { })(τcF , { })(τFΔ , I

FF  and FFΔ are respectively the mean value, maximum 
width, interval factor and interval change ratio of interval loads { })(τIF . The structural 
displacements and stress responses can also be considered to be interval variables. Equations 
(4), (6) and (7) can be rewritten as: 
 

{ } { } )()(
1

tztu I
i

n

i

I
i

I ∑
=

= φ                                                   (14) 

 

ττωτωζζτφ
ω

dttFFtz
t I

i
I
i

c
i

I
iF

cI
F

TI
iI

i

I
i ∫ −−−=

0
)(sin)](exp[)}({}{1)(          ( ni ,...,2,1= )   (15) 

 
}{ [ ] }{ )()( tuBEt I

e
I
e

I
e =σ                      ( me ,...,2,1= )   (16) 

 
Since I

iω and }{ I
iφ  are functions of I

FE , I
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FA , structural displacement and stress 

are functions of the interval factors of structural parameters, damping and excitation. From Eq. 
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From Eq. (14), the mean value { })(tuc  and maximum width { })(tuΔ of interval structural 
displacement response can be obtained: 
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Then, the lower bound { })(tu  and upper bound { })(tu  of interval structural displacement 
response can be obtained: 
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From Eq. (16), the mean value }{ )(tc

eσ  and maximum width }{ )(teσΔ of interval structural 
stress response can be obtained: 
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Furthermore, the lower bound { })(teσ  and upper bound { })(teσ  of interval structural stress 
response can be obtained: 
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5. NUMERICAL EXAMPLE 

To illustrate the method, a 25-bar space truss structure shown in Figure 1 is used. The mean 
values of the Young’s modulus, density and cross-sectional area are 
respectively )MPa(10058.2 5×=c

eE , )mkg(1065.7 33×=c
eρ  and )m100.3 24−×=c

eA . The 
mean values of bars’ length can be seen in Figure 1. A step load is acting in the positive Y 
direction at node 1. The mean value of the load is )(106)( 3 NtF c ×= . 

 
 

 
 

Figure 1. 25-bar space truss structure (unit: m). 
 
 

In order to investigate the effect that changing the Young’s modulus, density, length, 
cross-sectional area and applied forces has on the structural dynamic responses, the values of 
interval change ratio FEΔ , FρΔ , FlΔ , FAΔ and FFΔ of interval structural parameters are taken 
as different groups. Mean value cUmax , maximum width maxUΔ , lower bound maxU   and upper 

bound maxU of the structural maximum displacement response are given in Table 1. Mean value 
c
maxσ , maximum width maxσΔ , lower bound maxσ   and upper bound maxσ of the structural 

maximum displacement response are given in Table 2. In addition, in order to verify the method 
presented in this paper, the structural dynamic displacement and stress responses are obtained 
using the interval perturbation method (see references [9,10]). These are also presented in 
Tables 1 and 2.  
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Table 1. Computational results of displacement (IPM*) (unit: mm). 

Model cUmax  maxUΔ  maxU  
maxU  

Deterministic model 
FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0 13.092 0 13.092 13.092 

FEΔ =0.03  FρΔ = FlΔ = FAΔ = FFΔ =0 13.093 0.19638 12.896 13.289 
FρΔ =0.03  FEΔ = FlΔ = FAΔ = FFΔ =0 13.095 0.58914 12.506 13.686 
FEΔ = FρΔ =0.03  FlΔ = FAΔ = FFΔ =0 13.094 0.78552 12.309 13.881 

FlΔ =0.03  FEΔ = FρΔ = FAΔ = FFΔ =0 13.089 0.78552 12.303 13.874 
FAΔ =0.03  FEΔ = FρΔ = FlΔ = FFΔ =0 13.101 0.39276 12.707 13.493 

FlΔ = FAΔ =0.03  FEΔ = FρΔ = FFΔ =0 13.103 1.1795 11.924 14.283 

FFΔ =0.03  FEΔ = FρΔ = FlΔ = FAΔ =0 13.092 0.39276 12.699 13.484 
FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0.03 13.106 2.3604 10.747 15.466 

13.132 3.9433 9.1905 17.076 
FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0.05 

13.092* 3.8752* 9.2168* 16.967* 
 
 

Table 2. Computational results of stress (IPM*) (unit: MPa ). 

Model c
maxσ  maxσΔ  maxσ  

maxσ  
Deterministic model 

FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0 123.65 0 123.65 123.65 

FEΔ =0.03  FρΔ = FlΔ = FAΔ = FFΔ =0 123.66 5.5642 118.09 129.22 
FρΔ =0.03  FEΔ = FlΔ = FAΔ = FFΔ =0 123.68 5.5642 118.12 129.26 
FEΔ = FρΔ =0.03  FlΔ = FAΔ = FFΔ =0 123.67 11.128 112.54 134.81 

FlΔ =0.03  FEΔ = FρΔ = FAΔ = FFΔ =0 123.62 7.4190 116.20 131.04 
FAΔ =0.03  FEΔ = FρΔ = FlΔ = FFΔ =0 123.73 3.7095 120.01 127.44 

FlΔ = FAΔ =0.03  FEΔ = FρΔ = FFΔ =0 123.76 11.141 112.62 134.90 

FFΔ =0.03  FEΔ = FρΔ = FlΔ = FAΔ =0 123.65 3.7095 119.94 127.35 
FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0.03 123.78 26.003 97.782 149.78 

124.03 43.438 80.595 167.48 
FEΔ = FρΔ = FlΔ = FAΔ = FFΔ =0.05 

123.65* 42.569* 81.081* 166.219* 
 

 
From Tables 1 and 2, it can be seen that:  

(1) The dynamic displacement and stress obtained by the method proposed in this paper are 
in agreement with that of the structural responses analyzed by interval perturbation method. This 
confirms the validity of the method. 

(2)The effect of the uncertainty of the Young’s modulus, density, length, cross-sectional 
area and applied forces on the uncertainty of the structural dynamic displacement and stress 
response are different. A change in the bar’s length produced the greatest effect on the structural 
displacement and stress response, however a change in the Young’s modulus and applied forces 
caused the smallest effect. 

(3)When the interval change ratio of physical parameters is equal to that of geometric 
dimensions, the uncertainty of geometric dimensions will produce greater effect on the 
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uncertainty of structural displacement response, however, the uncertainty of physical parameters 
will produce greater effect on the uncertainty of structural stress response. Along with the 
increase of the interval change ratio (uncertainty) of structural parameters and applied forces, the 
dispersal degree of structural dynamic responses will notably increase. 

6. CONCLUSIONS 

In this paper the effect of the uncertainty of material parameters, structural dimensions and 
applied forces on the structural dynamic response is presented using the interval factor method. 
The mean value, maximum width, lower and upper bounds of displacement and stress response 
of a truss structure have been obtained. The benefit of this method is that only one finite 
element solution needs to be found in order to determine the uncertainty of the response, this 
significantly reduces the computational time required. This method will also be applied to the 
interval dynamic response analysis of further types of structures with interval parameters. 
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