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Abstract 
 
In general, forces are caused on objects when sound waves interact with their surfaces. Based 
on this phenomenon, acoustical levitation is a technique in which stationary sound fields are 
used to trap small samples, liquid or solid, compensating the action of gravity. Rotations of 
suspended objects in acoustic levitation devices are common, which are due mainly to 
asymmetries of the samples and sometimes to instabilities of the system. This fact turns out to 
be disadvantageous for applications where a precise control of the sample position is desired. 
The general objective of this work has been to study the extent to which it is possible to 
transfer angular momentum from a sound field to matter, and to control the rotations of an 
object. An original contribution of the work is that the acoustic fields have been produced in 
free space, i.e., without the need of a cavity, which gives the advantage of free access to the 
sample. We present an analysis of the properties of acoustic fields analogous to optical 
vortices; by using these kinds of sound fields, we show experimentally the generation of 
rotations in a solid disk produced by acoustic waves. In addition, by generating acoustic 
vortices of the first and second orders, we demonstrate that the direction of rotation is 
consistent with the corresponding helicity; we also analyse the differences of the angular 
momentum transfer between both cases. On this basis, we conclude that this mechanism can 
be used to achieve rotational control of acoustically levitated objects. 

1. INTRODUCTION 

The study of acoustic forces had a first significant impulse approximately three decades ago, 
when they were considered as potential tools for positioning objects in spaceships. In recent 
years, with the development of transducers capable of generating acoustic waves of high 
amplitude, a renewed interest in acoustic forces has arisen since they can be used to 
manipulate and process materials in a non-invasive way, avoiding contact with tools or the 
use of containers. Small objects of any density, solids or liquids, with no special electric or 
magnetic properties, can be levitated by a standing sound field [1]. 

The use of acoustic forces is particularly advantageous in the manipulation of small 
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samples. For instance, although it is easy to trap objects with tweezers or micro-tools, to 
release them again is not simple; the objects or part of the materials often remain adhered to 
the manipulation instruments or containers. In addition, the forces produced by acoustic 
waves are distributed over the whole surface of the sample; there are no “point forces” that 
could damage the structure of fragile objects. 

Even though samples can be acoustically levitated for long periods, it is not rare to 
observe rotations of suspended objects, particularly in non-spherical solids. This fact turns out 
to be disadvantageous for several applications, such as precise manipulation of objects, crystal 
growth, and observation of samples through microscopes. In other cases, however, a 
controlled rotation of the levitated objects may be desirable, for instance, in the evaporation of 
drops from liquid-solid suspensions. The rotations of acoustically levitated objects can either 
saturate to a constant angular velocity or evolve into chaotic movements, giving rise in the 
latter case to an escape of the object from the acoustic trap. Therefore, the need of precise 
rotational control in acoustic levitation devices becomes a main subject of interest. 

A way to produce rotations of objects by sound waves has been reported by using a 
rectangular cavity with two sides of the same length [2-6]. When two degenerated modes are 
simultaneously excited, but with a phase difference between them, a torque is exerted on an 
object in the cavity. The torque has the maximum value at a phase difference of ± 90 degrees, 
and the direction of the induced rotations depends on the sign of the phase difference. The 
disadvantage of this technique to control the rotations of levitated samples is the need of the 
rectangular cavity, which prevents free access to the sample. 

As a starting point, we intended to establish the acoustic analogous to the so-called 
optical vortices. In 1992, it was demonstrated by Allen and co-workers that optical vortices 
possess a well-defined orbital angular momentum (OAM) [7], which is different from the spin 
angular momentum associated with circular polarization. Years later, it was proved that both 
spin and OAM can be transferred to optically trapped microparticles [8]. Whereas spin 
angular momentum causes a torque on a trapped particle about its own axis, OAM causes the 
particle to rotate about the beam axis [9].  

In this paper we demonstrate that acoustical vortices can indeed be generated, and by 
this means it is possible to transfer angular momentum to matter from acoustical waves in free 
field conditions. Moreover, two different sound fields have been studied theoretically and 
have been experimentally achieved; one is similar to a first order vortex and the other one to a 
second order vortex. We compare the differences between the two sound fields, and we 
analyse the torques generated on a disk in each case. 

2. THEORY 

2.1. Acoustic Vortices 

In optics, three basic propagation modes can be identified among light beams with circular 
cylindrical symmetry, namely, the cosine modes whose complex amplitude has the form 
Ψ = u(ρ,z)cos(lϕ), the sine modes with Ψ = u(ρ,z)sin(lϕ), and the rotating modes or optical 
vortices with Ψ= u(ρ,z)exp(±ilϕ). In all these cases, (ρ,ϕ,z) represent the usual cylindrical 
coordinates, and u(ρ,z) is an arbitrary complex function. One way of generating optical 
vortices is by means of an appropriated superposition of cosine and sine modes as follows 
 

( ) ( ){ }ϕϕρ lilzu sincos),()( ±=Ψ r .                                            (1) 
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This is depicted schematically in Figure 1 
for the case l=1 and with u(ρ,z) 
corresponding to the so called Laguerre-
Gauss beams [7]. While the phase of the 
sine and cosine modes have only the values 
0 and π, the superposition results in a linear 
variation from 0 to 2π around the mode 
circumference, which gives rise to a 
rotation of the vortex phase as the wave 
field propagates. The sign in Eq. (1) 
determines the direction of rotation, so that 
the vortex may have either positive helicity 
(plus sign) or negative helicity (minus sign).  

With these ideas in mind, we 
generated a kind of first order acoustic 
vortex in free field with four equal simple 
sources. They should be placed equidistantly around a circumference of radius a, and they 
should be driven with a phase difference of ±π/2 with respect to the adjacent sources. Thus, 
the complex amplitude p(r) of the total sound field generated by the four sources at the 
observation position r can be described by  
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Here rn is the distance from the n-th simple source to a point in the space, A/rn is the pressure 
amplitude of the wave generated by the n-th source with A a real constant, and N=4. In a 
similar way, a kind of second order acoustic vortex can be produced by means of eight simple 
sources equidistantly distributed around a circumference. In this case, Eq. (2) is also 
appropriate to describe the acoustic field, but with N=8; in general, for producing an 
acoustical vortex of order l, N=4l independent sources will be required.  

Considered the simple sources located in the xy planes of a reference system with the 
centre of the circumference at the origin. Under the conditions 2222 zayx +<<+  and |kax|, 
|kay| << 22 za + , where (x, y) denote the transverse variables in any horizontal plane, the 
wave field of Eq. (2) along the vertical axis (z) for N=4 can be approximated as 
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The term exp(±iφ) appears explicitly here, which is characteristic of a first order vortex. 
Under the same conditions, we can get a similar equation for the sound field generated with 
the eight simple sources, and in this case a term of the form exp(±i2φ) is obtained, 
corresponding to a second order vortex.  

The graphs of the acoustic intensity in the plane z = 5 cm are illustrated in Figure 2 for 
the two studied sound fields; here a = 18.5 cm and λ = 26.4 cm. We can observe the energy 
circulation around the origin, which is a fingerprint of a vortex. Since the fluid density 
variations are proportional to the sound pressure, the linear momentum of the fluid is in turn 
proportional to the sound intensity. Therefore, according to Figure 2, a disk centred at the 
origin (see Fig. 3) is expected to rotate in the same direction as the sound intensity.  

Figure 1. Generation of a first order optical vortex 
from the superposition of a cosine and a sine 
modes out of phase by π/2. The first row represents 
the intensity, where blue is the minimum and red is 
the maximum values. The second row is the phase, 
where blue represents zero, green represents π and 
red represents 2π. 
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Figure 2. Theoretical sound intensity on the plane z = 5 cm corresponding to the two studied vortices.  
 
It should be observed that the contribution to the total torque on the disk from the 

acoustic field is expected to be small around the origin; this is a consequence of the fact that 
the amplitude of the acoustic pressure is zero at that point for both acoustic fields. Therefore, 
the contribution to the total torque will be more significant in outer regions. As a result, one 
can expect that the bigger the diameter of the disk, the larger the torque. It is worth 
mentioning, that this is also a characteristic of optical vortices, which exhibit a dark core on-
axis surrounded by light, giving rise to a transverse intensity pattern that resembles a 
doughnut of light (see Figure 1, last column on the right); the larger the order of the vortex, 
the larger the diameter of the dark spot at the centre.  

The graphs of the two sound fields at a given 
time (snapshots) are shown in Figure 4. One can see 
that there is a continuous phase cycle of 2π radians 
around a circumference for the sound field produced 
with four sources, and two cycles of 2π for the 
acoustic wave generated with eight sources. These are 
characteristics of first order and second order vortices, 
respectively. There is a significant difference between 
the two acoustic fields; for the first order vortex, the 
magnitude of the particle velocity has a maximum 
value in the origin, whereas there is a particle velocity 
node at that point for the second order vortex. 

2.2. Acoustic Torque 

Consider an object with surface S immersed in a sound field with complex amplitude p and 
angular frequency ω. The time average of the component of the acoustic torque τ parallel to a 
unit vector a exerted on the object is given by [5] 
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Figure 3. Reference frame used for the 
calculation of the acoustic torque 
exerted on a disk or radius ro. 
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where, r = (x, y, z) is the position vector from the origin to a point on S, δυ is the viscous 
penetration depth, u is the particle velocity assuming zero viscosity (equal to i∇p/ρω), and b* 
represents the complex conjugate of the variable b. 
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Figure 4. Theoretical distribution of the sound pressure on the plane z = 5 cm at a given time 
(snapshot) for each of the two studied acoustic vortices. 
 

For the case depicted in Figure 3, the acoustic torque in the z direction exerted on the 
disk of negligible thickness and parallel to the xy plane can be obtained from Eq. (4) as 
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Notice that if the sound pressure is independent of z, (∂2/∂x2+∂2/∂y2) p = ∇2p = -k2p and 

the acoustic torque becomes proportional to the sound intensity.  
It should be observed, according to Figure 2, that even for positions on the disk that do 

not satisfy the conditions  2222 zayx +<<+  and |kax|, |kay| << 22 za + , the total exerted 
torque within the sound field is expected to be very large, sometimes even  higher than the 
case where these conditions are fulfilled. In fact, to get a large acoustic torque, we used in our 
experiment a disk with a radius that is not very small compared to a nor to λ. 

3. EXPERIMENT 

The experimental setup is illustrated in Figure 4. Eight drivers (for horn loudspeakers) are 
distributed around a circumference of radius a = 18.5 cm. For generating the first order 
acoustic vortex, only four of them are activated, the ones on the axes of the coordinate 
system; whereas the eight drivers are used to generate the second order vortex. Each driver is 
connected to an independent channel of an audio amplifier (two channels per amplifier). In 
turn, the four amplifiers are fed by using eight channels of an external sound card controlled 
with a PC. The signals to be reproduced, including the allotted phase differences, are 
generated by means of a computing program (Matlab 7.0).  

To have a precise control of the phase differences and the pressure levels, each 
reproduce chain was individually characterized. Any undesired difference in the level and 
phase produced by each driver was compensated when the signals were created. In addition, 
the sign of the topological charge was set to cover the 2πl−phase cycles in either clockwise or 
counterclockwise directions. For the characterization process we used a two-channel FFT 
signal analyser; the sound field was measured with an omni-directional precision microphone  
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placed 4 cm from the baffle on the z axis. 
The optimum performance of the 

whole device took place at the resonant 
frequency of the drivers. A tube was placed 
at the output of each driver, connecting it to 
the baffle; in this way, the resonant 
frequency was modified by the length L of 
the tubes. The resonance was shifted up to 
1300 Hz with L = 6 cm, but the device can 
be operated from 1100 to 2500 Hz with a 
reasonable good performance.  

For measuring the acoustic torque, we 
implemented a twist pendulum with an 
optical fibber of high linear stiffness and a 
hanging disk of radius ro=8.1 cm, which 
was made of acrylic (1.68 mm thick) and 
with both sides covered with a rubber foam 
layer (3.3 mm  thick). We covered both 
sides of the disk with robber foam because 
we observed that the acoustic absorption of 
the surface of the disk has a significant role 
in the transfer of angular momentum from 
the sound field, as has been reported by Schroeder [6]. Among several alternatives of rubber 
foam, we chose one with open pore and the highest acoustic absorption. Underneath the disk, 
on the baffle, we placed a 360º protractor with resolution of 1°, and we fixed a pin at the edge 
of the disk to make the angle measurements (inset picture on the upper left corner of Figure 
5). All the experiments were realized with the device inside an anechoic chamber.  

When the sound field was generated, the disk rotated an angle θ to a new equilibrium 
position, where the acoustic torque generated by the vortex was exactly balanced by the 
opposite torque exerted by the torsion of the optical fibber. The torque in the torsion 
pendulum is given by τ = −κθ, where κ is the rotational stiffness equal to 

 
22 /4 TI diskπκ = .                                          (6) 

 
Here Idisk = π ro

4σ /2 is the moment of inertia of the disk of mass M = 43.21 g; σ is the mass 
surface density of the disk, which was calculated to be 0.21 g/cm2; and T = 52.66 s is the 
oscillation period of the pendulum. As a result, κ = 20.18 dn⋅cm/rad was found.  

4. RESULTS AND DISCUSSION 

The disk was initially placed at a height of 0.9 cm from the baffle. However, instabilities were 
observed in the disk inside the first order vortex at the higher sound pressure levels of the 
considered interval. The disk swung, and this movement affected its rotational motion. This 
prevents us from determining the correct angle of rotation. In addition, when the disk moved 
in a stable way, for the lower sound levels used, the angles of rotation were small, less than 
20º. With the second order vortex, however, instabilities did not show up, and the torque was 
obtained. The problem of the instabilities with the first order vortex disappeared when the 
disk was lifted at a higher distance over the baffle; in this way, the determination of the torque 
for that vortex was possible with the disk at a height of 4.9 cm.  

o90

0o

o270

o180

L

Amplifier Sound
Card PC

Figure 5. Experimental setup for the transfer of 
angular momentum from an acoustical vortex to a 
hanging disk in a torsion pendulum. 
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The measured acoustic torques are shown 
in Figure 6. The sound pressure levels in the x 
axis of the graph were measured, without the 
disk, at 4 cm from the baffle and with only one 
driver operating. It can be observed that the 
experimental data can be fitted quite well to a 
straight line in a logarithmic plot. For the two 
curves corresponding to the second order 
vortex, the values of the slope are 2.034 and 
2.007 for the disk at 0.9 cm and 4.9 cm, 
respectively. These values coincide with the fact 
that the acoustic torque depends on the square 
of the sound pressure amplitude, according to 
Eq. (4). For the case of the first order vortex, 
however, the slope is equal to 1.88. This slope, smaller than the expected value of two, may 
be explained by the fact that the magnitude of the particle velocity for the first order vortex is 
larger around the z axis; therefore, acoustic energy is efficiently absorbed by the rubber foam 
around the centre of the disk, but the contribution to the total torque is very small in that zone. 
According to Figure 6, the second order vortex was more efficient at transfering angular 
momentum to the disk. In addition, by comparing the two curves for the second order vortex, 
corresponding to the two different heights of the disk, the torque was is slightly larger for the 
disk closer to the baffle.  
 

  
Figure 7. Theoretical distributions of the acoustic torque per unit surface of the disk for the two 
studied sound fields. The height was 5 cm from the baffle. 

 
The difference in the torque applied on the disk, between the first and second order 

vortices, can be understood by analysing the contributions to the total torque from the 
different parts of its surface. The distributions of the torque per unit surface of the disk for the 
two studied sound fields are shown in Figure 7. They were obtained according to the 
integrand of Eq. (5). The results of these graphs give only a good qualitative approximation to 
the actual situation, since the effects of diffraction were not taken into account in our 
calculations, and the acoustic absorption is not described by Eq. (5). We can see that around 
the central region of the disk, the contribution to the total torque is very small; in fact, the 
transfer of angular momentum is even less efficient in that region for the second order vortex. 
This is consistent with the observations made above on the graphs of the sound intensity. 
However, as the distance from the origin increases, the acoustic field is more uniform for the 
second order vortex. The contribution to the total torque for this sound field seems to be 
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Figure 6. Acoustic torque exerted on a disk 
with a radius of 8.1 cm for different values of 
the sound pressure. 
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independent of the azimuthal angle along the surface of the disk, and increases with the 
distance to the origin. On the other hand, the torque per unit area of the first order vortex has 
an azimuthal dependence for values of r larger than approximately 4 cm, equal to 0.15 times 
λ, where there are also four regions with a very small contribution to the total torque.  

5. CONCLUSIONS 

In this work, we have demonstrated for the first time, to our knowledge, that angular 
momentum can be transferred from a sound field to matter under free field conditions, without 
the need of a resonant cavity. The wave fields generated for such a task are the acoustical 
analogous of the so called optical vortices; we studied, theoretically and experimentally, 
acoustical vortices of first and second orders. An absorbent disk suspended from a torsion 
pendulum was used to quantify the acoustical torque. The magnitude of the acoustic torque 
depends linearly on the acoustical energy, as expected, but it also depends on the vortex 
charge, the wavelength, and the size of the disk. In particular, it was found that the second 
order acoustic vortex produces a higher torque than the first order one, on an object, when it is 
larger than approximately 0.15 times the wavelength. In additon, the second order vortex 
generates more stable conditions of the rotation of the disk.  Future work will aim to perform 
a more detailed characterization of the system in order to optimize the acoustical torque. And 
finally the implementation of the system in acoustic levitation devices. This will give the 
advantage of having rotational control while keeping free access to the suspended sample. For 
this purpose, ultrasound will be used, which allows the reduction of the size of the system, 
and at the same time avoids the annoyance of audible sound.  
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