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Abstract

Mechanisms of nonlinear coupling between the normal modes of vibrating mechanical struc-
tures have been explored, previously particularly in the context of struck idiophones (percussive
instruments). However, the analysis of the vibrations resulting from impulsive loads has been
restricted by our ability to solve the nonlinear equations of motion. In recent times, numerical
methods for solving the equations have burgeoned, and we arenow in a position to apply the
methods to structures of interest such as musical plates andgongs. In this paper, we consider
the nonlinear coupling of modes of vibration whereby energyis transferred between the normal
modes of a kinked bar. A finite element analysis package is employed to analyse the response.
The results confirm that initially missing modes of vibration are generated through nonlinear
coupling mechanisms.

1. INTRODUCTION

The analysis of many musical instruments begins with the vibrational behaviour of strings,
bars, plates or shells. The linear vibrational theory of such simple structures is generally well-
understood and documented. The complexity of the analysis obviously increases with the com-
plexity of the structure, and for many structures analytical solutions of their governing equations
are not possible. In such situations, numerical techniquesmay be employed to solve the equa-
tions.

Nonlinear analysis of simple structures is also well-advanced. For musical structures, non-
linear analysis is employed to predict the hardening and softening behaviours with increased
amplitude of vibration, as well as coupling mechanisms between modes of vibration [1]. How-
ever, the inclusion of nonlinear terms in the governing equations for a structure results in non-
trivial equations and severely limits our ability to solve them analytically. Instead, a variety of
approximations and implementations have been employed in the analysis of nonlinear phenom-
ena.
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The authors have been interested for some time in the validity of various nonlinear nu-
merical techniques adopted by structural engineers [2], as well as the application of structural
engineering techniques to the analysis and design of musical structures [3, 4]. In the last decade,
nonlinear analysis of structures has become more common dueto changes in the design codes
that govern structural engineering practice. This has led to the establishment of more robust nu-
merical techniques for solving the nonlinear equations of motion for complex structures. From
this vantage point, we now re-visit the nonlinear phenomenaof mode coupling that is exhibited
in some vibrating structures, and consider the applicationof modern numerical methods to this
problem.

2. MODE COUPLING IN MUSICAL STRUCTURES

Standard linear analysis of simple structures predicts that the natural modes of vibration are
independent. Furthermore, the removal of a particular modeof vibration, accomplished by ex-
citing the structure at one of the nodes of that mode, should ensure that the mode does not
re-appear. However, for systems with complicated boundaryconditions, there can be a transfer
of energy from the modes initially excited to others that mayhave originally been missing. An
example of this effect is the shimmer of high frequency modeson the tam-tam (large gong) that
appear in the sound spectrum in a time order of up to one secondafter the initial low frequency
thump [5].

Investigations of such mode coupling have been undertaken using a simplified, one-
dimensional analogue of a tam-tam, namely a symmetrically kinked bar [6]. The bar was de-
signed with particular geometrical parameters such that the natural frequencies of the second
and third symmetric modes were harmonically related, namely ω3 = 2ω2. The results demon-
strated that by striking a symmetrically kinked bar on a nodeof the third mode, that mode began
with a zero amplitude and rose to a maximum amplitude in a timeorder of 0.1 seconds. Hence,
there was a coupling mechanism between modes that inherently allowed transfer of energy from
one mode to another.

The theoretical analysis of the vibration indicated that the nonlinear coupling is a result
of two separate mechanisms. The first is the amplitude-dependent tension generated in the bar
by its motion and the coupling of shear forces at the kinks. This predicts that the amplitude of
the third mode will be proportional of the square of the amplitude of the second mode, that is

a3 ∝ a2

2
(1)

wherea denotes the amplitude. The second, less significant, mechanism arises from the internal
bending moments about either side of the kink. The semi-quantitative agreement between theory
and experiment suggested that the major physical mechanisms producing the mode coupling had
been successfully identified. The analysis was performed prior to the advent of fast personal
computers and, more particularly, nonlinear numerical techniques. In this paper, we study the
same problem to investigate the application of finite elements to this phenomenon.

3. FINITE ELEMENT ANALYSIS

In essence, the finite element method is a computational technique based on an extension of
matrix structural analysis [7]. The method models a structure through an assemblage of ele-
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ments connected at discrete points. The dynamic analysis ofa system produces a set of natural
frequencies based on the system’s geometrical characteristics.

The problem at hand involves causing a bar to vibrate as a result of the application of a
single non-periodic impulse. The response will therefore be transient, and the initial amplitude
of vibration will depend on the size of the applied impulse. Hence, the analysis must take into
account that the applied load is a function of time.

Transient dynamic analysis entails the direct numerical integration of the equations of
motion to calculate nodal displacements, velocities and accelerations. Using the finite element
method, the governing differential equations are converted to a discrete set of matrix equations
in terms of the nodal displacements. These discrete equations can be expressed in the form

Mü(t) + Cu̇(t) + Ku(t) = F(t) (2)

whereM is the mass matrix,C is the damping matrix,K is the stiffness matrix,F is the applied
load vector,u is the vector of nodal displacements and a dot over a symbol denotes differ-
entiation with time. The finite element calculations reported below were carried out using the
commercial package Strand7 [8].

4. MODELLING ISSUES

4.1. Geometry

 
 

CHAPTER 2 
 

An Investigation of Nonlinear Mode Coupling in Symmetrically Kinked Bars 
using Finite Element Analysis 

___________________________________________________________________________ 
2.1  INTRODUCTION TO THE PREVIOUS EXPERIMENT 
 

Legge and Fletcher (1987) used a galvanized steel bar with rectangular cross section, 
having thickness 0.6 mm and straight length BC of 300 mm (see Figure 2.1). By altering the 
positions of the tilting vices at ends A and D and therefore changing the length of the kinked 
bar ends, the desired ω = 2ω relationship was attained. Legge and Fletcher (1987) then 
calculated the lengths of the ends AB and CD necessary to achieve the appropriate resonance 
condition. If the kinked lengths were 88 mm, then the third symmetric mode (ω , 313 Hz) was 
approximately twice the frequency of the second symmetric mode (ω , 153 Hz). 
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Their study included an experiment that involved striking the bar with a weighted piano 
hammer on a node of the third mode, thus exciting a vibrational state in the bar that initially 
excluded the third mode. The analysis was performed by positioning a subminiature 
accelerometer at the center point M in Figure 2.1 allowing measurement of the amplitude of 
mode generated. 
 
 
 

Figure 1. Geometry of the kinked bar (units = mm).

The kinked bar shown in Figure1 was modelled on the dimensions and physical char-
acteristics used by Legge and Fletcher [6]. The values used for the current paper are given in
Table1. The transverse displacement of point M was calculated, andonly symmetrical modes
were considered. This allowed the analysis to be conducted on only half the bar, which signifi-
cantly reduced the computational time.

Table 1. Properties of the bar.

Property Value

Young’s modulus (GPa) 193

Poisson’s ratio 0.28

Density (kg/m3) 8000

Width of bar (mm) 10
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Since the finite element method is an approximate method, thestructure must be divided
into sufficient elements to achieve the required accuracy. The accuracy was checked by refining
the mesh until the solution converged. In our case, segmentsAB and BM were subdivided into
10 and 15 beam elements, respectively, to achieve sufficientaccuracy.

4.2. Natural frequencies

An initial linear analysis of the system produced the natural frequencies and mode shapes for
each of the symmetric modes. The values of the natural frequencies are given in Table2. From
the results, the location of the vibrational node for the third mode was determined to be approx-
imately 51 mm from point B (see Figure1).

Table 2. Natural frequencies for the first five symmetric modes.

Mode Frequency (Hz)

1 27

2 153

3 313

4 432

5 761

4.3. Damping

Damping mechanisms are complex and difficult to accurately define for many systems. There
are various mathematical models that are used to represent damping. In this investigation, we
used Rayleigh damping, which is a form of viscous damping commonly used in structural anal-
ysis [7]. Rayleigh damping assumes that the damping matrixC in equation2 is a linear combi-
nation of the stiffness and mass matrices such that

C = αM + βK (3)

The values ofα andβ are determined by specifying the damping ratios,ζ1,2, for two
different reference frequenciesΩ1,2. The damping ratios are given in terms ofα andβ by

ζn =
1

2

(

α

Ωn

+ βΩn

)

(4)

Equation4 can be solved forα andβ. Some care is needed to ensure that the resulting level of
damping is realistic, and that important frequencies are not damped out artificially. However,
increasing the damping ratios reduced the amount of mode coupling that could be practically
measured. Since the objective of this work was to establish if finite element analysis could
predict mode coupling, lower but less realistic values wereused in this analysis.

4.4. Impulse

The impulse applied to the bar must also be modelled. The shape and duration of the impulse
will influence the analysis, and any comparison between the modelled behaviour and experi-
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mental results would require careful correlation.
Three shapes were investigated, namely triangular, parabolic and half-sine. All produced

nonlinear coupling behaviour to some extent. However, the various shapes and durations of the
impulses affected the ability to distinguish the amplitudeof the generated coupled mode. The
triangular impulse shape was finally chosen because it produced the greatest definition in the
peaks of the Fast Fourier Transform spectrums. The impulse length was adjusted based on the
analysis time, and this resulted in applying quite rapid excitations.

4.5. Time-stepping

The dynamic equations of motion (equation2) were solved within Strand7 using the Newmark
time-stepping scheme [7]. The nonlinear effects in this analysis occur because the stiffness
matrix,K, is a function of the deformation and the axial load in each member. Hence, an iterative
procedure is required to solve the equations of motion. Strand7 is capable of including both
effects onK as options in the time-stepping procedure.

The time step used for the calculations must be sufficiently small to ensure that the results
are accurate and the impulse is modelled correctly. As discussed below, the results from the
finite element analysis were post-processed using a Fast Fourier Transform. Hence, the time
step should also be small enough to avoid aliasing in the transform calculations [9].

4.6. Analysis parameters

The behaviour of the kinked bar was determined using an impulse applied at the node of the
third mode. Table3 summarises the parameters that were used for the finite element analysis.

Table 3. Values/inputs of parameters used for the finite element analysis.

Parameter Value/Input

Impulse Shape Triangular

Impulse Length (s) 0.015

Analysis Time (s) 0.4

Damping frequencies (Hz) 5, 320

Damping Factors (%) 0.5, 0.5

5. RESULTS

The bar shown in Figure1 together with the parameters from Tables1 and3 was analysed using
Strand7. Of particular interest was the amplitude of the harmonically-related second and third
modes. The finite element analysis was repeated for a varietyof impulse magnitudes. The results
of each analysis were evaluated based on the size of the amplitudes of the second and third
modes relative to each other. By measuring the variation in the vertical displacement of point
M with time, displacement versus time curves were obtained.The results were transformed into
the frequency domain using a Fast Fourier Transform with a Hann window [10].

Figure2 shows the maximum generated amplitude of mode 3 as a functionof the initial



ICSV14 • 9–12 July 2007 • Cairns • Australia

 for a kinked bar struck at a node of the third mode 
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Figure 2. Variation of mode amplitudes.

amplitude of mode 2. The curve of best fit through the results is

a3 = 0.32a2

2
− 0.002a2 (5)

wherea2 anda3 denote the amplitudes of the respective modes.
The linear coefficient in equation5 is quite small compared to the quadratic coefficient,

and can be neglected. The resulting quadratic relationshipbetweena2 anda3 clearly indicates
mode coupling between the second and third modes arising from the amplitude-dependent ten-
sion. The finite element results are in qualitative agreement with the results from Legge and
Fletcher [6].

6. CONCLUSIONS

Standard linear analysis of simple structures predicts that the natural modes of vibration are in-
dependent. However, the inclusion of nonlinear terms in thegoverning equations for a structure
indicates that energy can be transferred between some harmonically-related modes. In this pa-
per, we examined the application of the finite element methodfor the solution of the nonlinear
equations of a kinked bar. The use of the finite element methodconfirmed the existence of non-
linear coupling between harmonically related modes. Further studies will be undertaken using
finite element analysis to model the transient behaviour of more complex musical structures.
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