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Abstract

Mechanisms of nonlinear coupling between the normal moflegoating mechanical struc-
tures have been explored, previously particularly in theext of struck idiophones (percussive
instruments). However, the analysis of the vibrations Itegufrom impulsive loads has been
restricted by our ability to solve the nonlinear equatiohsotion. In recent times, numerical
methods for solving the equations have burgeoned, and weoaven a position to apply the
methods to structures of interest such as musical plateg@mngs. In this paper, we consider
the nonlinear coupling of modes of vibration whereby enesgyansferred between the normal
modes of a kinked bar. A finite element analysis package idareg to analyse the response.
The results confirm that initially missing modes of vibratiare generated through nonlinear
coupling mechanisms.

1. INTRODUCTION

The analysis of many musical instruments begins with theatibnal behaviour of strings,
bars, plates or shells. The linear vibrational theory ohssimple structures is generally well-
understood and documented. The complexity of the analysi®osly increases with the com-
plexity of the structure, and for many structures analygso#utions of their governing equations
are not possible. In such situations, numerical techniqueg be employed to solve the equa-
tions.

Nonlinear analysis of simple structures is also well-adeah For musical structures, non-
linear analysis is employed to predict the hardening antesofg behaviours with increased
amplitude of vibration, as well as coupling mechanisms keetwmodes of vibratiorl]. How-
ever, the inclusion of nonlinear terms in the governing ¢iqua for a structure results in non-
trivial equations and severely limits our ability to solVem analytically. Instead, a variety of
approximations and implementations have been employdtiartalysis of nonlinear phenom-
ena.
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The authors have been interested for some time in the waldlivarious nonlinear nu-
merical techniques adopted by structural engineglysak well as the application of structural
engineering techniques to the analysis and design of mMssioatures B, 4]. In the last decade,
nonlinear analysis of structures has become more commotodti&nges in the design codes
that govern structural engineering practice. This hasdedd establishment of more robust nu-
merical techniques for solving the nonlinear equations ofiom for complex structures. From
this vantage point, we now re-visit the nonlinear phenonamaode coupling that is exhibited
in some vibrating structures, and consider the applicaifanodern numerical methods to this
problem.

2. MODE COUPLING IN MUSICAL STRUCTURES

Standard linear analysis of simple structures predictsttif@natural modes of vibration are
independent. Furthermore, the removal of a particular noddgbration, accomplished by ex-
citing the structure at one of the nodes of that mode, shooddire that the mode does not
re-appear. However, for systems with complicated boundamnglitions, there can be a transfer
of energy from the modes initially excited to others that rhaye originally been missing. An
example of this effect is the shimmer of high frequency madethe tam-tam (large gong) that
appear in the sound spectrum in a time order of up to one sedftardhe initial low frequency
thump B].

Investigations of such mode coupling have been undertakarga simplified, one-
dimensional analogue of a tam-tam, namely a symmetricatiydd bar p]. The bar was de-
signed with particular geometrical parameters such tren#tural frequencies of the second
and third symmetric modes were harmonically related, ngmegl= 2w,. The results demon-
strated that by striking a symmetrically kinked bar on a noidée third mode, that mode began
with a zero amplitude and rose to a maximum amplitude in a trder of 0.1 seconds. Hence,
there was a coupling mechanism between modes that inheadiotived transfer of energy from
one mode to another.

The theoretical analysis of the vibration indicated that tlonlinear coupling is a result
of two separate mechanisms. The first is the amplitude-dbperiension generated in the bar
by its motion and the coupling of shear forces at the kinkss phedicts that the amplitude of
the third mode will be proportional of the square of the amoplé of the second mode, that is

as o< a: Q)

wherea denotes the amplitude. The second, less significant, mesrhamises from the internal
bending moments about either side of the kink. The semiifaéive agreement between theory
and experiment suggested that the major physical mechapiducing the mode coupling had
been successfully identified. The analysis was performad iy the advent of fast personal
computers and, more particularly, nonlinear numericdinégues. In this paper, we study the
same problem to investigate the application of finite elesenthis phenomenon.

3. FINITEELEMENT ANALYSIS

In essence, the finite element method is a computationahiged based on an extension of
matrix structural analysis/]. The method models a structure through an assemblage -of ele



ments connected at discrete points. The dynamic analysisygétem produces a set of natural
frequencies based on the system’s geometrical charduieris

The problem at hand involves causing a bar to vibrate as & #stine application of a
single non-periodic impulse. The response will therefarérbnsient, and the initial amplitude
of vibration will depend on the size of the applied impulsenide, the analysis must take into
account that the applied load is a function of time.

Transient dynamic analysis entails the direct numericigration of the equations of
motion to calculate nodal displacements, velocities amelacations. Using the finite element
method, the governing differential equations are condexdea discrete set of matrix equations
in terms of the nodal displacements. These discrete eqsatan be expressed in the form

Mi(t) + Cu(t) + Ku(t) = F(t) @)

whereM is the mass matrixC is the damping matriX is the stiffness matrix; is the applied
load vector,u is the vector of nodal displacements and a dot over a symbuitds differ-
entiation with time. The finite element calculations repdrbelow were carried out using the
commercial package Strandd] [

4. MODELLING ISSUES

4.1. Geometry

150

Figure 1. Geometry of the kinked bar (units = mm).

The kinked bar shown in Figure was modelled on the dimensions and physical char-
acteristics used by Legge and Fletch@r [The values used for the current paper are given in
Tablel. The transverse displacement of point M was calculated pahdsymmetrical modes
were considered. This allowed the analysis to be conductexhty half the bar, which signifi-
cantly reduced the computational time.

Table 1. Properties of the bar.

Property Value
Young’s modulus (GPa) 193
Poisson’s ratio 0.28
Density (kg/n?) 8000
Width of bar (mm) 10




Since the finite element method is an approximate methodttbeture must be divided
into sufficient elements to achieve the required accurduog.alccuracy was checked by refining
the mesh until the solution converged. In our case, segnidhend BM were subdivided into
10 and 15 beam elements, respectively, to achieve suffiacniracy.

4.2. Natural frequencies

An initial linear analysis of the system produced the ndtiremquencies and mode shapes for
each of the symmetric modes. The values of the natural freziee are given in Tabl2 From
the results, the location of the vibrational node for thedinnode was determined to be approx-
imately 51 mm from point B (see Figuds.

Table 2. Natural frequencies for the first five symmetric nsode

Mode | Frequency (Hz
1 27
2 153
3 313
4 432
5 761

4.3. Damping

Damping mechanisms are complex and difficult to accuratefind for many systems. There
are various mathematical models that are used to repreaeridg. In this investigation, we
used Rayleigh damping, which is a form of viscous dampingroomly used in structural anal-
ysis [7]. Rayleigh damping assumes that the damping m&nx equation? is a linear combi-
nation of the stiffness and mass matrices such that

C =aM + 3K 3)

The values ofo and 3 are determined by specifying the damping ratiQs,, for two
different reference frequencié€xs ,. The damping ratios are given in termscoind 3 by

1/ «

Equation4 can be solved forr and 3. Some care is needed to ensure that the resulting level of
damping is realistic, and that important frequencies atedamped out artificially. However,
increasing the damping ratios reduced the amount of modglioguhat could be practically
measured. Since the objective of this work was to establiginite element analysis could
predict mode coupling, lower but less realistic values wesed in this analysis.

4.4. Impulse

The impulse applied to the bar must also be modelled. Theeshiag duration of the impulse
will influence the analysis, and any comparison between tbdetted behaviour and experi-



mental results would require careful correlation.

Three shapes were investigated, namely triangular, pacadoal half-sine. All produced
nonlinear coupling behaviour to some extent. However, greous shapes and durations of the
impulses affected the ability to distinguish the amplitad¢he generated coupled mode. The
triangular impulse shape was finally chosen because it peatithe greatest definition in the
peaks of the Fast Fourier Transform spectrums. The impaisgh was adjusted based on the
analysis time, and this resulted in applying quite rapidtaxions.

4.5. Time-stepping

The dynamic equations of motion (equat®rwere solved within Strand7 using the Newmark
time-stepping schemé&]. The nonlinear effects in this analysis occur because tiffeess
matrix, K, is a function of the deformation and the axial load in eacmiver. Hence, an iterative
procedure is required to solve the equations of motion.n8#das capable of including both
effects onK as options in the time-stepping procedure.

The time step used for the calculations must be sufficientigisto ensure that the results
are accurate and the impulse is modelled correctly. As dssl below, the results from the
finite element analysis were post-processed using a FasteFduansform. Hence, the time
step should also be small enough to avoid aliasing in thestoam calculationsq).

4.6. Analysisparameters

The behaviour of the kinked bar was determined using an isepapplied at the node of the
third mode. Tabl& summarises the parameters that were used for the finite etemnalysis.

Table 3. Values/inputs of parameters used for the finite efranalysis.

Parameter Value/Input

Impulse Shape Triangular

Impulse Length (s) 0.015

Analysis Time (s) 0.4

Damping frequencies (HZ) 5, 320

Damping Factors (%) 0.5,0.5
5. RESULTS

The bar shown in Figuré together with the parameters from Tablemnd3 was analysed using

Strand7. Of particular interest was the amplitude of therfwamically-related second and third
modes. The finite element analysis was repeated for a vafietypulse magnitudes. The results
of each analysis were evaluated based on the size of thetadediof the second and third
modes relative to each other. By measuring the variatiohenvertical displacement of point
M with time, displacement versus time curves were obtaiiibd.results were transformed into
the frequency domain using a Fast Fourier Transform with mnHeindow [LQ].

Figure2 shows the maximum generated amplitude of mode 3 as a funatitire initial
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Figure 2. Variation of mode amplitudes.

amplitude of mode 2. The curve of best fit through the ressilts i
as = 0.32a3 — 0.002a, (5)

wherea, andaz denote the amplitudes of the respective modes.

The linear coefficient in equatidhis quite small compared to the quadratic coefficient,
and can be neglected. The resulting quadratic relatiortstipeernu, andas clearly indicates
mode coupling between the second and third modes arisingtiie amplitude-dependent ten-
sion. The finite element results are in qualitative agreemath the results from Legge and
Fletcher f].

6. CONCLUSIONS

Standard linear analysis of simple structures predictstitieanatural modes of vibration are in-
dependent. However, the inclusion of nonlinear terms irgtheerning equations for a structure
indicates that energy can be transferred between some hemaig-related modes. In this pa-
per, we examined the application of the finite element mefbothe solution of the nonlinear

equations of a kinked bar. The use of the finite element matbatirmed the existence of non-
linear coupling between harmonically related modes. feursudies will be undertaken using
finite element analysis to model the transient behaviouraiencomplex musical structures.
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