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Abstract 
 
Based on the applicability of smart materials in controlling the behaviour of engineering 
structures, a feedback control algorithm, which has been introduced previously by the authors 
[7], is implemented to control the dynamic response of composite laminates using bonded 
piezoelectric sensors and actuators. In order to investigate the shear transverse effect in the 
piezo-laminate and therefore be capable of analyzing thick plates, finite element formulation 
is derived based on higher order shear deformation theory of laminated plates. Finally, 
feedback control parameters, containing displacement and velocity gains, are changed and 
amplitude of dynamic response is thereby controlled. The numerical results show the effects 
of the different lamination angles on the vibration of plate. Furthermore, it is observed that 
how static deflection, natural frequencies and peak responses can be controlled by the 
displacement control gain and active damping can be provided by adjusting the velocity 
control gain.  

1. INTRODUCTION 

Composite structures and, in more practically used kind, laminated components are being 
used vastly in aerospace and automotive applications due to their high strength and stiffness 
to weight ratios. In addition, use of them allows the designer to choose between many 
possible structural layouts of the material, in order to obtain high structural performances. 
Piezo-laminates as smart-intelligent composites offer great potential for active control of 
advanced aerospace, nuclear, and automotive structural applications.  

From the previous decade, many finite element models have been proposed for modeling 
structures along with piezoelectric actuators and sensors. Moita et al.  [1] have utilized the 
Classical Laminted Plate Theory (CLPT) for finite element modeling of the active vibration 
control of a thin composite laminated plate containing piezoelectric layers. However, 
Chandrashekhara and Tenneti  [2] and Bansal and Ramaswamy  [3] have constructed their 
formulation on the basis of First-Order Shear Deformation Theory of laminated plate (FSDT). 
They have used shear flexible four and nine node elements for the same purpose to consider 
transverse shear effects, respectively. Furthermore, Higher-Order Shear Deformation Theory 
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(HSDT) exists which assume a parabolic distribution of transverse strains through the 
thickness, which was introduced by Reddy  [4] for the analysis of composite laminated plates. 
This theory has been utilized by Zhou et al.  [5] for modeling a composite plate with bonded 
piezoelectric layers (without active control). Dynamic behavior of laminated plates is 
important to be considered when transient loads are applied. Dynamic response of bimorph 
plates and beams are studied by Wang  [6]. In the author’s previous works[7], finite element 
formulations were developed for the shape and vibration control of Functionally Graded 
Material (FGM) plates based on HSDT using piezoelectric sensors and actuators. The effects 
of constituent volume fraction (as a characteristic of the FGM material), the configuration of 
the sensor/actuator pairs and the velocity and displacement feedback control gains on the 
static and dynamic response of the structure were studied in their work.  

In the present study, following the tendency to study smart composites, active control of 
composite laminated plates is being to be considered. Finite element method has been chosen 
to analyze the active control of vibration and dynamic response of laminated plates bonded to 
piezoelectric actuator/sensor patches. The utilized element is of four node second order type. 
In order to investigate thick plates and also the shear transverse effect in the piezo-laminate, 
finite element formulation is derived based on the higher order shear deformation theory 
(HSDT) of laminated plates. In order to prevent shear locking phenomenon in thin plates, C1 
continuous elements are used. A new feedback control algorithm, which is introduced by the 
authors  [7], is implemented to control the static deflection, natural frequency and dynamic 
response of composite laminates using bonded piezoelectric sensors and actuators. In the 
previous works performed on the piezo-laminates, either no active control is implemented (i.e. 
Ref  [3]) or only one control gain is considered in the control strategy. For instance, in the 
work published by Chandrashekhara and Tenneti  [2], active control is achieved using only 
velocity control gain. However, in the feedback control system used here, both displacement 
and velocity gains are considered which can be adjusted with the corresponding parameters.  

2. MATHEMATICAL FORMULATION  

2.1 Governing Equations  

According to the linear theory of piezoelectricity  [8], constitutive equations for a piezoelectric 
material containing direct and indirect effects can be written as below: 

 
ij ijkl kl ijk kC e Eσ ε= −  (1)

  

i ijk jk ij jD e K Eε== +  (2)
 
where ijσ , iD , jE , ijklC , ijke , and ijK  are the stress tensor, electric displacement, electric 
field vector , elastic modulus, electric permittivity and  piezoelectric tensors, respectively. 
Displacement-based formulations will be made by the variational principle which is in the 
form: 
 

0)(
1

0

1

0

1

0

1

0

..
=+−++−− ∫ ∫∫ ∫∫ ∫∫ ∫

t

t S
i

t

t S
ii

t

t V
pii

t

t V
iiijijii

pp

dSdtQdSdtuTdtdVEDdvdtufuu δφδδδδεσδρ  
 

(3)

 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

where S and V represent the surface area and volume of both the composite and piezoelectric 
materials, while Sp and Vp reply for the surface area and volume of the piezoelectric material, 
respectively. Parameter T indicates the applied surface traction and Q is the electrical charge 
applied to the surface of piezoelectric actuators. 

2.2 Finite Element Formulation  

In order to mathematically formulate the finite element model, the displacement field is 
assumed according to the Higher order Shear Deformation Theory (HSDT)  [9]. By using the 
HSDT, a four node plate element with seven degrees of freedom containing u0, 
v0, ,x yβ β (displacements of a point in the middle or reference surface in x, y directions and 
the rotations of normal to the mid-surface about y and x axes, respectively, interpolated using 
bilinear Lagrangian interpolation functions) and w0 (displacements in z direction), xw ∂∂ /0 , 
and yw ∂∂ /0  (interpolated using Hermite interpolation functions) is chosen. In addition, 
elements containing actuator and sensor patches have two electric potential degrees of 
freedom. Structural and electrical continuous variables are estimated in terms of nodal 
displacements as: 

 
{ } [ ]{ }e

uu N u=  ; { } { }eN φφ φ⎡ ⎤= ⎣ ⎦  (4)
 
where ][],[ φNNu  are the structural and electrical shape (interpolation) functions, respectively. 

Notations { }eu and { }eφ indicate the structural and electrical generalized nodal variables 
vectors. With the above interpolations, strain components and the electric field can be 
obtained through derivations: 
 

}]{[}{ eBE ϕϕ ϕ−=−∇=  (5)
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where ][][ ϕϕ NB ∇=  and [ ]uB is a matrix containing the derivatives of interpolation functions. 
The kinetic and strain energy of the panel can be readily found as  [3]: 
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where n is number of layers of the laminated plate, np number of piezoelectric layers, 

kρ density, kh thickness, and 
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the prescribed traction T, body forces Fb and the applied electrical charge density Q on the 
actuators is given by: 
 

{ } { } { }
p

T T T
b aA V A

W u TdA u F dv QdAφ= + −∫ ∫ ∫   
(9)



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

in which aφ refers to the electric potential on the actuator. Now the Hamilton principle is 
applied to obtain the finite element governing equation of motion: 
 

0
( ) 0

t
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(10)
 

By introduction of Eq.’s (7)-(9) in Eq. (10), the equations of motion of the piezo-
laminated plate can be obtained as follows: 
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[ ]{ } [ ]{ } { }u a q aK u K Fφ φφ φ− =  (12)

  

[ ] { } [ ] { } 0u s s sK u Kφ φφ φ− =  (13)

 
where [ ]uuM ,[ ]uuK ,[ ]uK φ , and [ ]K φφ  are mass, structural stiffness, coupled structural-
electric stiffness, and electric stiffness matrices, respectively. Vector{ }q aF  is the applied 
electrical charge to the piezo-actuator patches and { }mF is the applied mechanical loading. 
Substituting Eq.’s (12) and (13) in Eq. (11) results in the overall finite element governing 
equation of motion: 
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The induced electric potential in sensor can be calculated from Eq. (13): 
 

1{ } [ ] [ ] { }s s u sK K uφφ φφ −=  (15)
 
By using the closed loop feedback control algorithm that will be used in the active control of 
the structure  [7]: 
 

.
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With dG as the displacement control gain and vG as the velocity control gain. Now we 
substitute Eq.’s (15) , (16) to obtain: 
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where Cp is the proportional damping matrix. 
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3. RESULTS AND DISCUSSION  

3.1 Verification of the Finite Element Code  

With the purpose of validating the solutions obtained from the developed finite element code, 
verifications are made by comparing the results obtained for natural frequencies and static 
deflections under electric and mechanical loads with the ones gained from the commercial 
finite element code ANSYS. It should be noted that comparisons are made for no feedback 
control situation, since simulating the closed loop control process in ANSYS is impossible. 
Each piezoelectric layer has a thickness equal to 0.00125m; however the core laminated plate 
is 0.005m thick with lamination angles [0/90/90/0]. The plate is of square type with length of 
40cm and properties of both laminated and piezoelectric materials, considered in the present 
study, are mentioned in   
Table 1 and  
Table 2, respectively. Comparison of the centreline deflections under both uniform load of 

23 /105.2 mN× and electrical load of an additional voltage equal to 40v (applied on the 
actuator layers) is illustrated in Figure 1. The well agreement of the solutions is because of 
precise consideration of transverse shear deformation effects in the higher order shear 
deformation theory used in the present study. 
  

Table 1. Properties of the laminated material. 

Graphite
/Epoxy 

11E =150GPa 3322 EE = =9GPa 1312 GG = =7.1GPa 

 23G =2.5GPa  12 13 23 0.3ν ν ν= = = 31600 /Kg mρ =  

 
Table 2. Properties of the piezoelectric material. 

Elastic modulus 
Poisson’s ratio 
Density 
Piezoelectric constant 
Dielectric coefficient 

963 10×  (N/m) 
0.3 
7600   (Kg/m3) 

12254 10−×  (m/V) 
915 10−×   (F/m)   

 

Figure 1. The centerline deflection of plate under uniform distributed load  23 /105.2 mN×  and actuator 
Voltage V = 40v. 
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3.2 Static Deflection Control  

In this section, a cantilever plate with sensor/actuator patch locations is considered for the 
static analysis (Figure 2). The material properties are those given in Tables 1 and 2. Thickness 
of each patch and the laminated part (the lamination of the composite core [0/90/90/0]) is 
0.0001m and 0.01m, respectively. Mathematical formulation of the problem indicates that the 
displacement control gain value is consisted in the stiffness matrices. In order to observe the 
effect of this control gain on the static deflection of the laminated plate, two different 
displacement gain values are considered in the analysis and the results for tip deflections of 
the cantilever plate under mechanical and electrical loads are indicated in Figure 3. From this 
figure, it can be concluded that reduction of the displacement gain (Gd) value results in 
decrease of deflection. Therefore, with varying the Gd, static deflection of the structure can be 
controlled. 
 

 
 

Figure 2. Sensor/Actuator patch configuration for the cantilever piezo-laminated plate. 

 
Figure 3. Tip deflection of the piezo-laminated plate under mechanical load 

3.3 Dynamic Response Control  

Control of the behaviour of the laminated plate in free vibration and transient dynamic 
conditions is considered in this section. The properties and dimension of the plate and 
piezoelectric patches are the same as the ones mentioned in the previous section. Table 3 
indicates the effect of displacement control gain on the first five natural frequencies of the 
plate. As Gd is decreased, natural frequency values are increased.  
 

Table 3. First five natural frequencies (Hz) of the plate for two different displacement control gains. 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Gd = -10 93.541 128.33 324.85 565.48 608.21 
Gd = -50 97.106 133.35 329.57 577.51 622.21 
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Dynamic response of the laminated plate is also controlled with piezoelectric 
sensor/actuator patches. The plate is subjected to a unit force at the tip in vertical direction 
and then released. This would provide an initial displacement for the plate to be assumed as 
an initial condition for the dynamic transient problem. The results are plotted in Figure 4 in 
which two different values of displacement gain and a velocity gain values equal to 0.01 and 
0.1 are considered. It can be observed that reducing Gd causes a reduction in the peak 
response of the structure. Regarding to Figure 4 and recalling the contribution of Gv to the 
damping matrix of the structure, variation of velocity gain value has affected the damping 
process of the transient response. Therefore, it can be concluded that Gd has effect on the peak 
response and Gv has effect on the damping of the laminated plate.  

In order to observe the influence of a different orientation of fibers in the composite plate 
on the dynamic response, the same simulations are done for lamination angles [30/45/60/90]. 
Dynamic deflection of this plate is shown in Figure 5. The same effects of Gd and Gv can be 
concluded on the peak response and damping speed of the responses. Again, the reduction of 
displacement gain reduces the amplitude of dynamic response and the influence of velocity 
gain is observable. However, due to the relation between the fiber orientations of a laminated 
structure and the corresponding structural stiffness, larger deflection is produced in the new 
laminate (i.e. laminate [0/9090/0] has more structural stiffness). So the design of the 
composite plate with respect to the stacking sequence requirements can be effective on the 
transient response of the structure. 

4. CONCLUSIONS 

Finite element formulations have been presented base on HSDT for active control of a piezo-
laminated plate under electric and mechanical loads. Verification of the code has been carried 
out by comparing the results with possible solutions made by commercial finite element 
package. A new feedback control algorithm, which is introduced by the authors  [7], has been 
implemented to control the static deflection, natural frequency and dynamic response of 
composite laminates using bonded piezoelectric sensors and actuators. Then the influences of 
displacement and velocity control gains have been investigated. Finally, the effect of different 
orientation of fibres in the laminated plate has been observed on the solutions. 

 

     
(a)                                                                       (b) 

 
Figure 4. Dynamic deflection at the tip of the cantilever plate with different displacement and velocity 
gain values (with lamination angles [0/90/90/0]) - (a) Gv=0.01 ; (b) Gv=0.1. 
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(a)                                                                       (b) 

 
Figure 5. Dynamic deflection at the tip of the cantilever plate with different displacement and velocity 
gain values (with lamination angles [30/45/60/90]) - (a) Gv=0.01 ; (b) Gv=0.1. 
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