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Abstract 
 
In this paper, linear buckling and vibration behaviour of multiphase magnetoelectroelastic 
(MEE) cantilever beam is analysed using finite element approach. The constitutive equations 
for the magnetoelectroelastic materials are used to derive finite element equations involving 
the mechanical, electrical and magnetic fields for the structure. The multiphase 
magnetoelectroelastic beam consists of piezomagnetic (CoFe2O4) matrix reinforced by 
piezoelectric (BaTiO3) material for different volume fraction. The influences of material 
constants on critical buckling load were studied. Numerical study on multiphase 
magnetoelectroelastic beam with different volume fraction was attempted.  

1. INTRODUCTION 

A magnetoelectroelastic structure has gained more importance in recent years due to coupled 
nature between mechanical, electrical and magnetic fields that is not present in the single 
phase piezoelectric or piezomagnetic materials. These structures have ability of converting 
energy one form to the other (among magnetic, electric and mechanical energy) [1-5]. These 
structures have direct application in sensing and actuating devices to control the vibration in 
structures. There have been several studies on the electric and mechanical behaviour of 
piezoelectric laminates.  Hui-Shen Shen [6] studied the thermal post buckling of simply 
supported, shear-deformable laminated plates with piezoelectric actuators subjected to the 
combined thermal and electrical loads. Buchanan [7] studied the free vibrations of completely 
coupled magnetoelectroelastic cylinders using finite element method. Dongwei Shu et al. [8] 
investigated the buckling behavior of a two-layered beam with single asymmetric 
delamination for clamped and simply supported boundary conditions. Metin Aydogdu [9] has 
studied the buckling analysis of cross ply laminated beams and critical buckling load obtained 
using the Ritz method where three displacement components are expressed in a series of 
simple algebraic polynomials. Chen et al. [10] derived the two-separated state equations to 
study the free vibration behavior of non-homogeneous transversely isotropic magneto-electro-
elastic plates. Ganesan et al. [11] have studied the buckling and vibration behavior of 
sandwich beam having viscoelastic core under thermal environment using finite element 
method. Recently, Ramirez et al. [12] studied the approximate solution for free vibration 
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problem by combining a discrete layer approach with the Ritz method and compared with the 
commercial finite element software ABAQUS. Based on the literature survey, there are no 
studies that deal with buckling and vibration behavior of multiphase magnetoelectroelastic 
beam under mechanical loading. In the present study, the influence of material properties on 
critical buckling load and natural frequencies with respect to applied load are analyzed.  

2. FINITE ELEMENT FORMULATION 

2.1 Constitutive equations 

In Cartesian coordinate system ix ( 1, 2,3i  ), the coupled constitutive equation for linearly 
magnetoelectroelastic three-dimensional solid can be written as, 
 

i ij j ik k ik kc S e E q H     

l lj j lk k lk kD e S E m H    

l lj j lk k lk kB q S m E H                     (1) 

 
where , 1, 2,...., 6i j  and , 1, 2,3l k  . The reduced notation has been used for each stress tensor 
representations, ( 1 11 2 22 3 33 4 23 5 31, , , ,              and 6 12 )  . Where ,i lD  and lB  
are the components of stress, electric displacement and magnetic induction respectively. 

,ij lkc   and lk  are the elastic, dielectric and magnetic permeability coefficients respectively. 

,ik ike q  and lkm are the piezoelectric, piezomagnetic and magnetoelectric material coefficients 
respectively. ,j kS E  and kH  are linear strain tensor, electric field and magnetic field 

respectively. In the present analysis, the coupled three-dimensional constitutive equations (1) 
for magnetoelectroelastic solid in 1 3x x  plane are assumed to be isotropic. The non-zero 
components of material constants of equation (1) for transversely isotropic 
magnetoelectroelastic solid can be written in matrix form as, 
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For plane stress problems, the stress components 2 4 6 0     , electric displacement 

2 0D   and magnetic induction 2 0B  . The strain-displacement, electric field-electric 
potential and magnetic field-magnetic potential are used in the finite element analysis along 
with the constitutive equations (1). The strain filed ijS  related to displacement, electric field 

vector iE  is related to the electric potential   and magnetic field vector iH  is related to the 

magnetic potential   can be written as, 
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, ,

1
( )

2ij i j j iS u u  ;  ,i iE   ;       
,i iH                      (3) 

 
The total potential G can be written as, 
 

1 1 1

2 2 2
T T T T T T
i ik j l lk k l lk k i ik k i ik k k lk kG S c S E E H H S e E S q H H m E                        (4) 

2.2 Finite element equations  

The magnetoelectroelastic cantilever beam is discretized using four nodded plane stress 
element having four nodal degrees of freedom viz. displacement in 1 3,x x  directions, electric 
and magnetic potentials. It can be represented by suitable shape functions such as, 

     [ ] ; [ ] ; [ ]u iu N u N N                          (5) 

where    1 3

T

iu u u , 1u and 3u  are displacements in 1x  and 3x  directions respectively. 

Substituting the Equations (1), (3) and  (5) in Equation (4), we can get the following coupled 
finite element equations [after assembling the elemental matrices] as, 

     2[[ ] [ ]] [ ] [ ] 0uu u uK M u K K        

     [ ] [ ] [ ] 0T
uK u K K       

     [ ] [ ] [ ] 0T T
uK u K K                       (6) 

 
where different elemental stiffness matrices are 
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where [ ],[ ]uB B  and [ ]B  are derivative of shape function matrix for strain displacement, 

electric field-electric potential, magnetic field-magnetic potential respectively. The derivative 
of shape function matrix used in the Equation (7) with respect to four-nodded rectangular 
element as, 
 

 

31 2 4

1 1 1 1

31 2 4

3 3 3 3

3 31 1 2 2 4 4

3 1 3 1 3 1 3 1

0 0 0 0

0 0 0 0u

NN N N

x x x x

NN N N
B

x x x x

N NN N N N N N

x x x x x x x x

   
     
   

  
    

       
 
         

; 
31 2 4

1 1 1 1

31 2 4

3 3 3 3

[ ]

NN N N

x x x x
B B

NN N N

x x x x

 

   
             
     

       (8) 

 

  is the density of the material. [ ],[ ],[ ],[ ],[ ]c q e m  , and [ ]  are reduced elastic constants 
matrix, piezomagnetic coefficient matrix, piezoelectric matrix, magnetoelectric coefficient 
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matrix, dielectric coefficient matrix and magnetic permeability matrix respectively [4]. By 
using standard condensation techniques, the equivalent stiffness matrix is derived by 
eliminating the electric potential   and magnetic potential   from Equation (6). The derived 

stiffness matrix [ ]eqK  is used to solve for nodal displacements. 

 

   [ ]eqK u F               (9) 

where 
1 1[ ] [ ] [ ][ ] [ ] [ ][ ] [ ]eq uu u II I u V IVK K K K K K K K 
                 (10) 

 
The component matrices for equation (10) are 
 

1[ ] [ ] [ ][ ] [ ]T T
I u uK K K K K   

   ;    1[ ] [ ] [ ][ ] [ ]T
IIK K K K K   

        

    (14) 
1[ ] [ ] [ ] [ ] [ ]T T T

IV u uK K K K K   
   ;    1[ ] [ ] [ ] [ ] [ ]T

VK K K K K   
   

 
After evaluating the displacements, the electric potential   and magnetic potential   can be 
computed at each nodal points using the following equations, 
 

    1

II IK K u 
 ;      1

V IVK K u 
                 (11) 

 
In the present analysis, four-point gaussian integration scheme has been adopted to evaluate 
the integrals involved in different elemental stiffness matrices. The elemental stiffness 
matrices are assembled to get the global stiffness matrices. The coupled equivalent stiffness 
matrix of magnetoelectroelastic system has been inverted to evaluate the displacements. After 
solving the coupled equation, the stresses can be evaluated using the constitutive Equation (1). 
The element wise stress components are used to formulate the geometric stiffness matrix. For 
each element, the geometric stiffness matrix can be computed using the relation, 
 

[ ] [ ] [ ][ ]e T
g g o gK B B dV              (12) 

 
where [ ]o  is the initial stress matrix and [ ]gB  is called non-linear strain displacement matrix 

given by 
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        (13) 

 
The stress components are found for each element at a specified buckling load and global 
geometric stiffness matrix [ ]G

gK  can be formulated. The following eigen value problem has to 

be solved to evaluate the natural frequencies for prestressed purely elastic and 
magnetoelectroelastic beam, 
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For purely elastic beam 
 

2[[ ] [ ]]{ } [ ]{ } 0G G G
uu g b bK K x M x               (14) 

 
For magneto-electro-elastic beam 
 

2[[ ] [ ]]{ } [ ]{ } 0G G G
eq g b bK K x M x               (15) 

 
In the above equation, [ ]G

uuK  and [ ]G
eqK  are global structural stiffness matrix for purely elastic 

and magnetoelectroelastic beam respectively.   is natural frequency and { }bx  is the 

corresponding eigen vector. [ ]G
uuK  is global mass matrix of the system. 

3. RESULTS AND DISCUSSIONS 

Analysis of multiphase magnetoelectroelastic beam is carried out in order to understand the 
nature of the variation of free vibration frequencies and critical buckling load. The multiphase 
magneto-electro-elastic beam consists of piezomagnetic (CoFe2O4) matrix reinforced by 
piezoelectric (BaTiO3) material for different volume fraction. The 100% volume fraction 
corresponds to piezoelectric (BaTiO3) material and 0% volume fraction corresponds to 
piezomagnetic (CoFe2O4) material. The geometric details of magneto-electro-elastic beam 
are: length (L) = 0.3 m and thickness (t) =0.01m. The mechanical load is applied at the free 
end of the beam. The material constant for different volume fraction of MEE beam used in the 
present study is taken from the ref. [4].  The boundary condition incorporated for fixed end is 

1 3 0u u      . 

3.1 Validation of the present formulation 

The present formulation has been validated with the commercial finite element package 
ANSYS [13] for the beam considered to be a piezoelectric material.  Since the Finite element 
package ANSYS is unable to directly solve the frequency behavior and critical buckling load 
for multiphase magnetoelectroelastic materials. The present finite element model is 
discretized using 840 four nodded elements with 3948 degrees of freedom (i.e. 1974 
displacement dof, 987 electric dof and 987 magnetic dof).  Table 1, lists the comparison of 
natural frequency and critical buckling load of piezoelectric elastic beam. From the Table 1, it 
can be seen that there is a good agreement between the present analysis and ANSYS.  
 

     Table. 1 Natural frequency and critical buckling load for  
                          Piezoelectric elastic beam 

Natural frequency (Hz) Buckling load (KN)  

ANSYS Present ANSYS Present 
Piezoelectric 
elastic beam 

85.045 83.079 293.025 280.47 

3.2 Influence of magnetoelectroelastic coupling on critical buckling load for multiphase 
magnetoelectroelastic beam 

In order to understand the influence of magnetoelectroelastic coupling on buckling load of 
multiphase magnetoelectroelastic beam, the analysis was carried out for different volume 
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fraction viz. 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Table.2 illustrates the critical buckling load for 
MEE beam with and without the coupling effects. It is observed that the 0% volume fraction 
corresponds to piezomagnetic material shows the higher buckling load and decreases with 
volume fraction. This is because of stiffness of the system decreases with volume fraction. 
The buckling load for 100% volume fraction corresponds to piezoelectric material is higher as 
compared to 80%. It is noticed that the critical buckling load of MEE elastic beam is lesser as 
compared to MEE beam. This is because of the piezoelectric, piezomagnetic and 
magnetoelectric coupling increases the stiffness of the system. This analysis can be used for 
evaluating the critical buckling load during the design stage and this helps the proper choice 
of volume fraction of MEE beam based on the applications. 

Table 2 Critical buckling load for multiphase magnetoelectroelastic beam 
Critical buckling load (KN) 

Description 
Vf=0.0 Vf=0.2 Vf=0.4 Vf=0.6 Vf=0.8 Vf=1.0 

without coupling 
(Elastic) 

370.19 311.35 325.18 291.75 248.99 280.21 

with  
coupling (MEE) 

370.16 316.72 332.79 301.44 259.07 290.91 

 

3.3 Influence of applied load on natural frequency of multiphase magnetoelectroelastic 
beam 

To understand the variation of natural frequency with respect to applied load, studies have 
been carried out for multiphase magnetoelectroelastic beam with different volume fraction 
under clamped � free boundary condition.  When the clamped-free magnetoelectroelastic 
beam is under prestressed condition, the equation (15) has to be solved to obtain the natural 
frequencies. Table 3 shows the natural frequency of MEE beam with and without 
magnetoelectroelastic coupling for first five modes and it is noticed that the natural frequency 
is higher for MEE beam due to coupling effect. The natural frequency decreases with volume 
fraction increases and higher for 100% as compared to 80%. 
 

Table 3 Natural frequency for multiphase magnetoelectroelastic beam 
Natural frequency (Hz)  Mode 

Vf=0.0 Vf=0.2 Vf=0.4 Vf=0.6 Vf=0.8 Vf=1.0 
1 101.52 96.55 91.30 85.71 78.49 82.53 
2 606.59 576.81 569.19 534.57 490.00  514.71 
3 1674.95 1589.39 1580.58 1485.51 1363.59 1430.23 
4 3237.64 3077.35 3061.16 2879.89 2648.85 2772.52 

Elastic 

5 4509.24 4272.86 4132.80 3870.24 3521.29 3734.62 
1 101.74 97.37 92.35 87.11 80.05 84.08  
2 606.63 580.72 575.61 543.20 499.67 524.76  
3 1674.92 1603.77 1598.06 1509.09 1390.17 1459.70              
4 3237.20 3101.49 3094.12 2924.52 2699.57 2833.84 

MEE 

5 4509.95 4317.35 4188.97 3945.74 3606.05 3817.60 
 
Figure. 1 (a) � (f) exhibits the variation of natural frequency of MEE beam with volume 
fraction 0%, 20%, 40%, 60%, 80% and 100% for first four modes. From the free vibration 
studies, it is clear that the natural frequency decreases with increase in applied load. Also it is 
observed that the natural frequency becomes zero at the critical buckling load. It is noticed 
that the natural frequencies are higher for lower volume fraction. This is because of 
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percentage of piezomagnetic material increases with volume fraction decreases. The elastic 
constants for piezomagnetic material are higher as compared to the piezoelectric material. 
When the volume fraction increases the percentage of piezoelectric material increases which 
leads to decease the stiffness of the system. 
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Figure 1. Variation of natural frequency for MEE beam with volume fraction of 
(a) 0% (b) 20% (c) 40% (d) 60% (e) 80% (f) 100% 
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5. CONCLUSIONS 

The buckling and free vibration behavior of multiphase magnetoelectroelastic beam is carried 
out using finite element approach. For the typical beam with material properties used in the 
present work, the following conclusions were made.  The volume fractions alter the critical 
buckling load and natural frequency of the system. The critical buckling load decreases with 
volume fraction increases for multiphase magnetoelectroelastic beam. The variation of natural 
frequency with respect to applied load is smooth, gradual and become zero corresponding to 
critical buckling load. The present analysis is highly useful in the design stage to achieve the 
optimum choice of volume fraction of MEE beam. 
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