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ABSTRACT 

Structural interior stress in operational state depends on its dynamics characters and external 
excitation. In this paper, the stress state of operational structure is firstly analyzed by using 
experimental modal analysis technique and structure intension theory. Energy distribution of structural 
every dominant modal can be discussed by extracting practical dominant modal. Consequently 
structural dynamic stress is calculated by translating complex static and dynamic coupling spatial 
stress state into simple stress state of each dominant modal. Furthermore, the simply support beam is 
modeled, and is carried out numerical simulation calculation and damage experiment. The stress of 
folding static and dynamic at 1/4L is compared to the stress at 1/2L along the longitudinal beam. The 
results show that maximum stress occurs at the 1/4L location, where static stress is smaller in still state 
but dynamic stress is bigger under harmonic excitation. 
Keywords: modal theory, dominant modal, coupling static with dynamic stress 
 

1．INTRODUCTION 

At present, relating scholars have done a lot of significative work about experimental modal 
analysis theories and its applications [1~4], which include identification of modal parameters, 
structural dynamic optimization design, structure dynamic modification, structure damage 

 



detection and finite element model modification etc. Simultaneously, others who applied 
themselves to structure intension research have also obtained prodigious fruits about theories 
of structure still intension, structure fatigue damage, stress and strain reliability [5, 6]. In 
practice, working structure is supposed to not only known steady loads but also unknown 
random dynamic loads. For the safety of operational structures, both static load stress and 
dynamic load stress should be considered in intensity calculations. In order to predict 
operational structural stress state exactly, the paper will connect structural dynamic characters 
with exterior excitation, combine experiment modal analysis principle with structure 
intension theory using existing theories, decompose dynamic question into static question on 
each order modal, unify static and dynamic stress, obtain the maximum stress location of 
structure, finally provide experience for structure design or structure damage identification. 
This paper is organized in five sections. In section 1, a brief introduction of dynamics is given. 
In section 2, basic principle of modal theory and intensity theory coupling is presented. In 
section 3, the numerical simulation is performed. And in section 4, experiment on simple 
support beam structure is carried out. Section 5 gives the conclusion of entire chapter. 

2. BASIC PRINCIPLE 

It is a premise of structural reliability evaluation that structural practical performance and its 
stress state can be calculated accurately. Firstly modal participation factors should be 
determined by computing structural dynamic characters and external excitation. Modal strain 
energy distribution of each order dominant modal can be calculated by spectrum analysis on 
measured response of structure. Then the location of the maximum stress on the beam can be 
obtained by folding static and dynamic under harmonic excitation.  
Confirmation of Modal Participation Factors: The modal participating factor is also called 
dominant modal, which plays the dominating role in structural response. If structures and 
exterior excitation are confirmed, then structural dominant modal can be gained. Generally, 
there are several dominant modals according to their relative occupation ratios.  
The ordinary differential equation of dynamic system generally is 

( )Mx Cx Kx f t+ + =&& &                                          (1) 

where M, C, and K are mass, damping, and stiffness matrices, respectively.  is an 

excitation force vector and

)(tf

x is a displacement vector.  

Defining , , transforming coordinate is 
tjFetf ω=)( tjXex ω=

qX Φ=                                                  (2) 

where q are modal participating factors; Φ is an eigenvector shape matrix. 
Change equation (1) into frequency domain equation, and use the weighted orthogonal 
conditions for the eigenvector shape. Suppose C is scale-damping matrix, so 
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where , ,  respectively are modal mass, damping and stiffness matrices, all are r r rm c k

 



diagonal matrices. 
From equation (2) and equation (3), response expression of displacements can be obtained 

FYX T
rΦΦ=                                               (4) 

Modal participation factor is . FYq T
rΦ=

Thus r th order modal participation factor can be obtained 
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Confirmation of Every Order Modal Strain Energy Distribution: In three dimensions 
space, equation (4) can be described as 

[
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×

× z

y

x
T
w

T
v

T
ur

mNw

v

u

F
F
F

Y
W
V
U

mm
φφφ

φ
φ
φ

3

]                          (6) 

According to elastic mechanics theory and Cauchy stress principle, the response expression 
of strain can be obtained 

x x

y y
T

z zT T Tu v w u v v w w u
r u v W

xy xy

yz yz

zx zx

F
F
F

Y
x y z y x z y x z

ε
ε
ε φ φ φ φ φ φ φ φ φ

φ φ φ
γ τ
γ τ
γ τ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤= + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

    (7) 

Supposing x
u

x
ψ

φ
=

∂
∂

, y
v

y
ψ

φ
=

∂
∂ , z

w

z
ψ

φ
=

∂
∂

,  

xy
vu

xy
ψ

φφ
=

∂
∂

+
∂
∂ , yz

wv

yz
ψ

φφ
=

∂
∂

+
∂
∂ , zx

uw

zx
ψ

φφ
=

∂
∂

+
∂
∂

 

Then equation (7) becomes  FY T
rΦΨ=ε

Where 
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is called strain modal shape matrix. 
So modal strain energy can be expressed as 
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Because , equation (9) can be expressed as  ∑
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i th order modal strain energy 
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j th element modal strain energy corresponding th order modal is i
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Therefore structural dominant modal and its energy distribution under the certain excitation 
environment can be obtained by spectrum analysis. Then we can begin to calculate the 
structural stress state of each independent order modal. 
Structural Stress State of Every Independent Modal: Stress will be bigger where structural 
modal strain is bigger when the frequency of excitation force is close to some order natural 
frequency. Following dynamic stress can be calculated under the harmonic force. 
Natural frequency and orthonormalized modal shape functions respectively are  

A
EI

l
if i ρ
π

2

2)(
=

, l
xi

Al
xi

π
ρ

φ sin2)( =
 

Vibration displacements caused by external excitation forces can be denoted by using series 
of 

L+++= 332211 φφφ qqqy                             (13) 

where , ,  are unknown time functions, 1q 2q 3q 1φ , 2φ , 3φ  are orthonormalized functions, 

which are location coordinate functions satisfying boundary condition. 
As for simple supported beam, after orthonormalized, series (13) can be denoted as 
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According to d’Alembert principle and virtual work principle, differential equation of time 

function can be expressed as iq
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where 
ρA

EIga =2 , is the distance between excitation point and left support point. Its 

solution is 

c

 



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

= 2

22

4224422

5

42244

3

0 sin
)(

sinsin2
l

ati
laiai

lt
lai

l
l
ciP

A
gqi

π
ωππ

ωω
ωπ

π
ρ     (16) 

where second item of right side denotes free vibration. Without considering free vibration, 
equation (14) can be written as 
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Suppose α is the ratio 1ωω of excitation frequency to first order frequency, so dynamic 

displacements response is 
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Dynamic moment function expression along the beam is  
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Therefore the maximum dynamic stress function expression is 
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3. NUMERICAL SIMULATION RESULTS 

Model Parameters: Figure 1 is the schematic view of the test beam. And finite element 
model can be seen in Figure 2. Geometry and physical parameters for the beam can be found 
in the table 1. In the finite element model, eccentric rotor is replaced by the equivalent mass 
at the position of 3/8L from left end. 
 
 

 
Fig.1 Schematic Views of the test Beam 

 



 
Fig.2 The FE Model of Beam 

Table 1. Geometry and physical parameters of the beam with eccentric rotor 
Parameter Value Parameter Value 

Length ml 11048.8 −×=  
Poisson’s 

ratio 
0.30v =  

Width mb 2100.5 −×=  
Mass of 
eccentric 

rotor 
kgM 2.31 =  

Height mt 2105.0 −×=  
Eccentric 

mass 
kgm 2104.7' −×=  

Mass 
density of 

beam 

331085.7 mkg×=ρ Eccentric 
distance 

cme 7.2=  

Young’s 
modulus 

2111006.2 mNE ×=   

 
By using FEM, first five orders natural frequencies of bending modal of beam with eccentric 
rotor respectively are 19.446 Hz，78.054 Hz，146.97 Hz，343.179 Hz and 423.836Hz. 
Modal Strain-Energy Distribution Rules: th element modal strain energy corresponding 

th-order modal is 
i

i
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And modal shape is 
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φ sin2)( = ，thus element modal strain energy of second order 

modal is 
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j th-order element modal strain energy corresponding to th-order modal is i
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Just considering plane stress state, then 
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Therefore Element modal strain energy at 1/4L beam can be calculated as 
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Ignoring the second term in the bracket of equation (25), then element modal strain energy 
responding to second-order modal is 
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where . Therefore element modal strain energy of beam at 1/4L and 1/2L 
responding to second-order modal can be obtained by solving equation (26). Comparison of 
modal strain-energy curve under effects of static and dynamic are shown in Figure 3. 

mmx 5.1=Δ

Static and Dynamic stress: Comparison of nodal stress curve in X-axis under effects of 
static and dynamic are shown in Figure 4. 
From table2, the numerical results show that the stress at 1/4L is more than 1/2L under 
harmonic excitation, while the static stress of the location at 1/4L is less than that of the 
location at 1/2L. So the final maximum stress occurs at 1/4L by folding static and dynamic 
stress.  
 

Static Modal Strain-energy curve
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Dynamic Modal Strain-energy curve
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Fig.3 Comparison of Static and Dynamic Nodal Modal Strain-Energy along Beam’s Length 

 



Static Nodal Stress curve

-4.00E+07

-2.00E+07

0.00E+00

2.00E+07

0 50 100 150

the Number of Node along Beam

th
e
 V
a
lu
e
 o
f

No
d
al
 
St
r
es
s

Dynamic Nodal Stress curve
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Fig.4 Comparison of Static and Dynamic Nodal Stress along Beam’s Longitude 

Table 2. Comparison of static, dynamic and folding stress between 1/4L and 1/2L 
Static(MPa) Dynamic stress(Mpa) Folding stress(MPa) Slit depth 

1/4L 1/2L 1/4L 1/2L 1/4L 1/2L 
40% 64.17 72.31 128.70 -- 192.87 72.31 
60% 144.40 162.70 289.57 -- 433.97 162.70 

** The dynamic stress at 1/2L is close to zero because the excitation frequency almost is 
equal to the second order natural frequency of the beam. And the final folding stress is 
calculated in case of invariant area of the cross section. 

4. EXPERIMENT VALIDATION 

Figure 5 and Figure 6 are photographs of the experiment setup, and the beam is excited by an 
eccentric rotator. The aim of this experimental design is described as follows: ①Eccentric 
rotor is parked at 3/8L from left supported-end in order to make static at 1/4L be less than the 
stress at 1/2L.②Parameters of beam can be seen from table1.③In order to make experimental 
results easy to observe, structure may be damaged finally, beam is previously slot at the 
location of 1/4L, 3/8L and 1/2L. The depth of slit is 0.2×10-2. 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Experimental Setup             Fig.6 Local Damage at 1/4L Position  

When the excitation frequency is close to second–order natural frequency, Experimental 
results show that structure is damaged at 1/4L, but not the static maximum position of 3/8L or 
not the position of 1/2L. Therefore the rationality and validity of assumption advanced earlier 
can be illuminated, that is, the stress state of beam not only relies on inherent dynamics 
characteristics but also undergoing exterior excitation. Complex stress state of static and 

 



dynamic coupling forces should be converted to simple stress state of each order modal in 
order to confirm the maximum stress location range of the beam. Furthermore, potential 
damage position of structure under dynamic excitation can be predicted, which provides 
guidance of structure damage location identification and structure optimization design. 

5. CONCLUSIONS 

From above numerical simulation and experiment study, conclusion can be summed up as 
follows: 
Firstly, the maximum static stress occurs at 3/8L according to traditional static intensity 
structure design theory. But structure may be damaged at the location of the maximum 
dynamic stress when excitation frequency is close to the certain order natural frequency, e.g. 
when excitation frequency equals to the second order natural frequency, the maximum 
dynamic stress appears at 1/4L. 
Secondly, Structural interior stress in operational state depends on its dynamics characters 
and excitation. The maximum stress location of structure can be obtained by confirming 
dominant modal and folding static and dynamic stress under the action of harmonic 
excitation.  
Finally, the calculation of structural dynamic stress based on dominant modal obviously is 
more reasonable. The dominant modal of the same structure alters according to excitation 
forces, so the maximum stress location should also be different in different operational state. 
Therefore, in order to analyze structural dynamic intensity, the complex stress state of folding 
static and dynamic should be newly measured in different operation. The method has been 
validated through numerical simulation and experiment, so it has widely practical foreground 
in the engineering application. 
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