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Abstract

In this paper, we present and discuss inverse methods to identify the elastic constants of an
orthotropic panel through vibration testing. We shall focus on a method working either in high
frequency or in low frequency domains. The principle is to use a correlation index between the
Fourier transform of the spatial vibrational field of a plate, and a parameterized set of inho-
mogeneous damped waves, called IWC (inhomogeneous wave correlation) in order to estimate
the plate elastic moduli, using therefore a nonlinear identification method. Nearfield acoustic
holography (NAH) techniques provide the necessary experimental data. A comparison with a
frequency modal approach is discussed to validate the result thus obtained.
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1. INTRODUCTION

This paper is concerned with the general problem of acoustic comfort in air transportation with
a special emphasis on aircraft and helicopter cabins. The results presented in this paper ad-
dress both the diagnosis and modelling problems. Diagnosis is achieved by near-field acoustic
holography techniques (NAH for short). NAH has been used to measure the vibro-acoustic
fields (sound pressure, vibration velocity, sound intensity) on all the inner panels of a helicopter
cabin. The experiment and the measure collection process are described in [1]. Our main interest
in NAH here is to provide a measurement tool giving access to the 2D-vibration field without
contact with these panels. Moreover, it is important to stress that one of the other advantages of
NAH as compared to measurement techniques such as optical interferometry or laser vibrom-
etry, is its low sensibility with respect to noisy data, and this feature is crucial for helicopter
in-flight measurements.

In the present paper, the structures so obtained are used to model the vibrations and the
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acoustic radiations of the different cabin panels. Modelling cabin noise requires the identifica-
tion of the mechanical properties of the radiating structures. The latter are generally made of
stiffened composite panels, and the measurement of their elasticity constant is rather delicate.
Therefore, we searched for an equivalent model based on the definition of an equivalent or-
thotropic plate for these complex structures, and we used “in situ” measurements to achieve this
goal. To be specific, we developed this strategy from measurements made on a particular set of
plates. However, the reader should easily convince herself that no significant loss of generality
ensues, as the methods presented here can be applied to more complex cases. In fact, our ob-
jective was not to solve the direct plate vibration problem. Our main motivation was to use the
plate vibration equations to validate the methods developed here, shooting for an estimate of
the plate elastic moduli.

At low frequencies, the behavior of these structures is mostly modal driven: the vibrations
can be described by the sum of the mode shapes of the structure. In this regime, a modal identifi-
cation approach is proposed. At medium or high frequencies where the modal density becomes
very important, this modal approach becomes inefficient. We provide a propagative description
of the dynamics. Wave propagation parameters are identified, most notably the elastic wave
numbers appearing in the dispersion equation.

Modelling the dynamic response of an orthotropic plate is a challenging problem which
has been widely studied in the recent past. One of the first method used to tackle this problem
was proposed by Aksu and al. in 1976 [3]. The authors used a finite difference method in order
to compute the vibration response of a stiffened plate. In the same vein, Mukhopadhyay [4]
proposed a different finite difference method to solve the vibration problem of an orthotropic
plate. More recently the finite element method was used to compute the dynamic response of
orthotropic plates in [5] and [6]. A semi analytical method was proposed by Dalaei and Kerr [7]
in 1996 to compute the free vibrations of an orthotropic plate: the authors used an expansion of
the solution in harmonics, recasting their approach in a Galerkin-like approach.

All the direct problems require the knowledge of the elastic constants of the orthotropic
panel under investigation. In this sense, a given orthotropic panel is characterized by a set of
four independent elastic constants [8]. Standard tests are available to determine these con-
stants through mechanical probes [9]. However, these measurements are more delicate than
for isotropic plates. As an alternative solution to the direct problem attempting to resolve the
vibrations of an orthotropic plate, some authors have proposed inverse methods to identify the
elastic constants of an orthotropic panel through vibration testing. Three approaches have been
proposed. The first approach is based on measurements of the natural frequencies of the tested
panel. An inverse identification technique is then used to obtain converged values of the elastic
constants from the measured natural frequencies. This method requires the the direct problem
generally by Rayleigh-Ritz or Galerkin techniques is presented in [8] and [10] for example. The
second approach presented by Grédiac et al. [11], uses the same data that the first one, namely
the measured natural frequencies of the panel, but works directly: neither initial values of the
mechanical properties of the plate, nor iterative computation are required. Nevertheless, these
two methods are low frequency methods. The third method proposed by Berthaut and al. in
2003 [12] works at high frequencies. It is also a direct method in which the authors proposed to
identify the parameters of the dispersion equation from vibrational velocity maps of the plate,
measured by a laser vibro-meter, through projection of this measure on an inhomogeneous
waves’base.
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The method we propose in the present paper is direct, so it can be compared to [11]. It per-
forms well at low frequencies. Also, it relies on the identification of a set of triplets (m,n, ωmn)

which represent the mode shapes Wmn and the natural frequencies of the structure. When com-
pared to the approach used in [11], the main advantage of our method is its simplicity. Indeed
[11] requires the computation of the variational principle for the measured mode shapes, forc-
ing an integration over the measured mode shapes Wmn. In our approach, one merely needs
to identify the triplets (m,n, ωmn) corresponding to the mode shapes Wmn which represents a
significant computational saving.

The paper is organized as follows: first a short preview of the main characteristics of
the vibro-acoustic response of a specially orthotropic plate is given. The related equations are
used in the numerical validation step presented later on. Then the principle of the identification
of the elasticity constants of a special orthotropic plate is presented. It is based on different
boundary conditions, such as simply supported and a clamped plates. In the following section,
we validate this approach with the numerical analysis of a carbon-epoxy composite plate. Then,
the dispersion equation of the identification is presented and compared to the modal approach
according to the numerical model. Finally, we apply these methods to an experimental case
study using near-field acoustic holography measures. We conclude with some perspectives for
future work.

2. VIBRO-ACOUSTIC RESPONSE OF A SPECIALLY ORTHOTROPIC
PANEL

We use cartesian coordinates (0, x, y, z) in free space R3. A plane elastic rectangular panel Σ

with length a, width b, and with a constant thickness h, is submitted to two different boundary
conditions: simply supported boundary, or clamped boundary onto its boundary ∂Σ. We are
interested in an industrial panel as one can find in an helicopter cabin. Since these panels are
fairly rigid, we assume that the influence of the fluid on the vibro-acoustic response of the panel
can be neglected. It is also assumed that the damping phenomenon can be neglected: this is a
valid approximation since we consider stiffened steel panels or advanced composites such as
carbon fiber-reinforced plastics.

In this section, we derive the time-harmonic system of equations governing the transverse
vibrations of an “in vacuo” thin, specially orthotropic elastic plate.

Let us denote u(M) the transverse displacement of the plate Σ at the point M with coor-
dinates (x, y), submitted to an external time-harmonic force f(M). The functions u and f are
solutions of the following system of equations: D1

∂4U

∂x4
+D2

∂4U

∂y4
+ 2 (D12 + 2D66)

∂4U

∂x2 ∂y2
−mω2U = −F ∀M ∈ Σ

Boundary conditions for U onto ∂Σ

(1a)

(1b)

where m denotes the mass of the plate per unit of surface, D1 D2 and D12 are the bending
stiffness factors, D66 is the torsional stiffness which depends upon the transverse Young’s mod-
uli E1 and E2, the shear-modulus G12 and the major and minor Poisson ratios ν12 and ν21 as
explained for example, in [6], [8] and [13]:
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D1 =
E1h

3

12(1− ν12ν21)
, D2 =

E2h
3

12(1− ν12ν21)
(2)

In the sequel, we denote by D3 the following real number:

D3 = D12 + 2D66 = ν12D2 +
G12h

3

6
, ν12E2 = ν21E1 (3)

Two boundary conditions (1b) are considered in the present paper:
Clamped plate: u = 0 if M ∈ ∂Σ, ∂xu = 0 if x ∈ {0, a} and ∂yu = 0 if y ∈ {0, b}.
Simply supported plate: u = 0 if M ∈ ∂Σ, ∂2

x2u = 0 if x ∈ {0, a} and ∂2
y2u = 0 if y ∈ {0, b}.

The identification method we propose here does not need to explicitly solve the above
system of equations (1a,1b) for the displacement of the plate and its boundary conditions. This
system is solved only for validation purposes: the numerical solutions of (1a,1b) for the bending
stiffness of a given orthotropic plate D1 D2 and D12 and the torsional stiffness D66, will give
the vibrating responses of well-known specially orthotropic panels. These responses will then
be introduced in our identification procedure. Finally, the identified bending stiffness factors
will be compared to the computed ones.

The system (1a,1b) is solved numerically by using a high-order finite difference method
to compute the bi-harmonic operator appearing in the plate equation (1a). The numerical study
of the method used to solve the system (1a,1b) is presented in [14].

A first appoach of determining the elastic constants of a thin specially orthotropic plate
uses both vibration testing and modal analysis of this plate. The reader might refer to [2] for a
detailed presentation of this method. We shall focus in teh sequel on the relevant so called IWC
approach. See [12] and [2] for example.

3. MIDDLE FREQUENCY IDENTIFICATION: THE I.W.C. APPROACH

3.1. Method principle

We first review the method developed in [12]. But the reader shall find futher developments
in [2]. Based on rather high frequency assumptions, this approach leads to the assessment of
a dispersion equation associated with the spatial vibrational field of a plate, denoted w. The
main idea is to project the actual vibrational field on a set of inhomogeneous damped waves
parameterized with the parameter triplets (k, θ, η), as follows:

ok,θ,η(x, y) = e−ik(1+iη)x cos θ+y sin θ) (damped plane waves) (4)

A correlation index between the harmonic field, namely the Fourier transform of the spa-
tial field w, and each of the preceding parameterized waves o, called IWC (“Inhomogeneous
Wave Correlation”), depending on the wave propagation parameters is computed as follows:

IWC(k, θ, η) =

∣∣∫ ∫
S
wo?k,θ,ηdxdy

∣∣√
|
∫ ∫

S
|w|2dxdy.|

∫ ∫
S
|ok,θ,η|2dxdy

(5)

where a? denotes the complex conjugate of a. The reader will notice that the frequency
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does not appear explicitly in the preceding equations. As a consequence, this method can be
classified as a nonlinear correlation identification method according to the terminology em-
ployed in the control theory literature.

In other words, IWC(k, θ, η) represents the “contribution” of the wave o to the field
w, i.e. the part of the energy supported by this wave of the total energy brought by the field.
In the middle and high frequency domains, due to important modal overlapping phenomena,
the actual field includes waves in all the directions θ. Therefore, the efficiency of this index
strongly depends upon the modal overlap of the field w. The search for a maximum of this
correlation index allows us to define a wave in any direction θi investigated, and thereby to
assess the dispersion equation of the plate. Fig. 1, shows a 2D map of the displacements obtained
at frequency 560 Hz and the wave numbers k estimated at this frequency with an angular step of
∆θ = 5◦. k̂ (respectively ô) denotes the estimate of the wave number (resp. the inhomogeneous
wave) given by the maximization of the IWC index.

Figure 1. Identification example at frequency f = 560 Hz. The angular step is ∆θ = 5◦.: displacement
field (up), wavenumbers map (down).

The IWC method implicitly permits to avoid the singular variations of the space field,
thus making this approach somehow independent of the boundary conditions and of the signal
source. This dispersion equation is then treated in order to provide a model of the equivalent
orthotropic plate equivalent to the original one, as shown in Fig. 2:

Figure 2. Plate identification block diagram.

In order to assess the flexural rigidities of the plate, i.e. (D1, D2, D12), we refer to the
classical formalism of [16]:

σω2 = k4(D1 cos4 θ +D2 sin4 θ +D12 cos2 θ sin2 θ) (6)

The estimates of the flexural rigidities (D̂1, D̂2, and D̂12) of the equivalent orthotropic
plate, come from the identification of the wave numbers k(θ) that maximize the IWC index in
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equation (5), and the minimization of a least squares index based on the formalism of equation
(6). We therefore derive the mechanical constants, or more precisely their estimates, of the
equivalent plate as follows:

Ê1 =
12

h3
D̂1(1− ν2), (7)

Ê2 =
12

h3
D̂2(1− ν2), (8)

Ĝ12 =
12

h3
D̂1(0, 5D̂12 − νD̂2) (9)

3.2. Validation on a numerical experiment

The link between the direct problem and the inverse problem has been used in order to check the
properties of the IWC method. The vibratory response of the special orthotropic carbon-epoxy
plate, already used in [2], paragraph 3.3., with dimensions 800×800×1 mm3 excited by a white
noise source term is computed according to the model presented in Section 2 above, leading to
vibratory velocity (or displacement) maps lying on a 64× 64 nodes mesh-grid.

We notice that the modal identification procedure presented in [2], is limited in the fre-
quency domain. The low frequency limitation comes from the constraint that one must work in
a domain of strong modal density (remember that one single resonant mode only represents two
points in the wave numbers plane while the estimation algorithm is trying to find it in any direc-
tion). Moreover, the high frequency limitation comes from the spatial sampling of the structure
studied: Shannon’s theorem states that it is impossible to identify the wave numbers greater than
fs/2 where fs is the inverse of the spatial sampling step. The reader may notice that this plate
presents an important structural orthotropy. The main material properties are (see Section 2 for
notations): E1 = 120 GPa, E2 = 10 GPa, G12 = 4.9 GPa, ν12 = 0.3 and ρ = 1510 kg·m−3.

Let us remember that the harmonic displacement maps are computed by solving system
(1a,1b) in the frequency range [100–1800 Hz].

Finally, the IWC method is applied at each measured frequency and the elasticity con-
stants are obtained by an averaging procedure upon the intended frequency range, as shown in
Fig. 3 below.

3.3. Comparison with the modal approach

The results obtained by both methods, modal method (see [2]) and IWC method, are rather
satisfactory. In both cases, one can notice that the shearing factor is underestimated: the error
is merely 20%. This can be explained by the fact that the rigidity constant G12 is very small,
compared to the value of E1, namely 4% of E1. Since the identification is based on the global
estimation of the three constants E1, E2 and G12, the absolute errors made on each of these
three constants are similar and comparatively, the relative error made on the estimation ofG12 is
greater than the one made on the other constants. Complete results are presented in the following
table:
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Figure 3. Elastic constants identification from simulated measures (dot curves: mean values w.r. to
frequency).

Elastic constants (GPa)
E1 E2 G12

Computed constants 120 10 4.9

Modal approach 125 10 3.9
IWC approach 121,8 9,85 3.47

Table 3: Comparison between Modal approach and IWC approach: elastic constants (GPa).

The main interest of the modal approach is its efficiency from the very first modes of the
plate and especially in the low frequency domain where their measurements are easily available.
Its main drawback is its great sensitivity to the boundary conditions.

The IWC method requires to work at rather high frequencies and needs a lot of data in
order to accurately define the vibratory behavior of the structure. Its main advantage is to be
almost independent of the boundary conditions and of the nature of the excitation source.

3.4. Application to an experimental case: teh role of NAH techniques

Our concern is now to apply the preceding identification method to complex structures such as
the ones encountered in the helicopter interior trim, in real excitation conditions in flight, as
well as in artificial conditions. The harmonic vibratory field is measured by near-field acous-
tic holography (NAH) techniques. A bi-dimensional network of microphones provides experi-
mental measures used to solve the reverse problem (back-propagation to the source plan phe-
nomenon), i.e. to recover the field on the plane area so analyzed. The interested reader can refer
to [17] and [18] for example. NAH permits the representation of the vibratory velocity fields
with a convenient resolution. In fact, the measurement is done in the nearfield of the source
so the evanescent waves are taken into account in the reconstruction process of pressure and
velocity spatial fields.

In practice, the study of stationary phenomena allows us not to measure simultaneously
all the network nodes, so a reduced number of microphones have to be moved to cover the
source area, provided a phase reference is used during the whole measurement campaign (for
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more details, see for example [19]). Nevertheless, this method presents some limitations and
requires rather sophisticated algorithms. Classically, filtering procedures are necessary to avoid
problems linked to the amplification of noisy components during the back-propagation process.
The reader interested in the algorithms we used, may refer to [20] for example.

In order to justify using acoustic holography techniques in the identification procedure,
an experimental setup has been realized, using an homogenous and isotropic aluminium plate
with dimensions 800 × 800 × 5 mm3. The mechanical properties of this plate are known “a
priori”: E1 = E2 = 72.4 GPa, G12 = 28 GPa ν12 = 0, 3 and ρ = 2770 kg·m−3. This plate
is excited by a modal shaker providing a white noise acceleration in the frequency range of
interest [10; 6000 Hz]. The excitation signals are captured by an accelerometer located at the
excitation point and the acoustic pressure is measured by an antenna with 64 microphones. A
fixed microphone acting as a phase reference, allows us to move the antenna in order to entirely
cover the plate surface, thus defining a final network with 40×40 nodes leading to the vibration
velocity field w of the IWC approach. Complete identification results are given in Fig. 4 bellow.

Figure 4. Parameter identification from experimental measures (dot curves: mean values w.r. to fre-
quency.

The dispersion of the results thus obtained is greater than in simulation (see Fig. 4). Nev-
ertheless, they remain quite satisfactory since we consider their mean values with respect to the
frequency, and this, despite the difficulties of the measurement procedure and the errors due to
the holography method itself.

4. CONCLUSION

In this paper, we presented and discussed two identification methods of the plate elasticity
constants based respectively on a modal representation and on an ondulatory description of the
vibrations. These methods have been validated and compared on a numerical example and an
experimental example. Our work shows that we have now at our disposal a complete range of
identification tools covering the low frequency domain as well as the high frequency domain.
Moreover, we have seen how interesting and relevant were the use of NAH techniques. We can
now apply these techniques to more complicated structures such as complex panels made of
composite materials together with stiffeners. Indeed, these structures will be modelled by plane
orthotropic descriptions whose vibratory behavior is predictable under given excitations. As a
consequence, these methods allow us to simplify the numerical modelling of complex structures
(homogenization problem): finite element representations, statistical energy analysis, ... so as to
derive their vibro-acoustic behavior. As an application, it will be interesting to model complex
structures such as an helicopter cabin, in order to derive the inner acoustic radiation and to
better control its propagation. In a forthcoming work, we will investigate the delicate problem
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of the structural damping estimation which is not yet satisfactorily treated, neither by modal nor
correlation approaches. As an evidence, the use of NAH techniques will provides the necessary
adequate and relevant data to these purposes.
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