MODAL ANALYSIS OF ASYNCHRONOUS MOTOR VIBRATION

Jiri Vondrich

Abstract

The modal analysis method is one of the research branches, rapidly developed recently in consequence to the availability of new measurement and computational means. The aim of the research was to apply this method to investigate the vibratory processes of electrical rotary machines in transient states. Transient states can occur, e.g. in the case of driving the direct current motor by a voltage step or in a sudden relief of the load on the synchronous motor. Mechanical impacts are transmitted through the frame and feet of the motor and from the motor feet to the foundation plate. They can cause, for large magnitudes, even deformation of the windings. The modal properties of an asynchronous motor have been investigated with excitation at a number of measuring points spread over the surface of the machine. The results can be useful for designing the motor frame and for the construction of the appropriate fixity.

1. INTRODUCTION

An electrical machine is a piece of equipment, which produces noise and mechanical vibration. The causes of this noise and vibration are both electromagnetic and mechanical. In nature, the mechanical reasons are unbalanced rotors, bad couplings, and bad bearings and so on. The electromagnetic reasons are vibration by magnetization, the forces between the stator and rotor, especially in a motor with a high number of poles and torque pulsation. Motors supplied by power conversion equipment always produce torque pulsation. But there are many sorts of motors, which produce torque pulsation in spite of the fact of an ideal form of energy supply. These are universal motors, single-phase induction motors, switch reluctance motors, step motors, vibration motors, etc. The frequencies of the vibration of the electric motors cover a wide spectrum - from fractions of Hz to tens of kHz. Vibrations produce noise and mechanical stress in the structure of these motors. A reason for torque pulsation can be a non-symmetrical power net. There are special and really dangerous voltage shocks from the power net torque shocks produced by the driven equipment. An electrical machine can be destroyed by these vibrations, especially torque shocks. There are reasons to study the mechanical quality of a motor, which is a complicated system of form, whose parts are comprised from different materials.
The concept of the modal analysis, introduced in [1], provides a natural foundation to the experimental modal analysis. When the data comes from the measured response of the vibration structure (the frame of the electrical motor), the relevant eigenvalues and eigenvectors of the state matrix may be interpreted as those of the underlying vibration system of the frame of the electrical motor. If the nature of the excitation is known but it is not measured, a mathematical description of the system in terms of natural frequency, damping ratio, and scaled mode shapes can be obtained. Furthermore, if the excitation is known or measured, the scaling of the mode shapes can be recovered to obtain a full mass-spring-dashpot model of the system from the multiple response data.

In contrast to the existing methods of experimental modal analysis, such an approach can be used on the operational noisy input-output data recorded during the operation of the system under actual working conditions; the data need not be collected under tightly controlled conditions.

As the majority of the popular methods of modal testing and analysis are primarily based on fast Fourier Transformation (FFT), elucidating their limitations; more details of the methods may be found in the documentation of commercial Fourier analysers implementing these techniques. These limitations refer to FFT without curve fitting; good curve fitting of real data requires more computation than a data dependent system and yet provides less accurate results.

72 points were chosen on the surface of the motor frame; of these 56 were on the cylindrical part in 7 transversal planes with 8 points on the circumference, 8 were at the upper part of the frame and 8 were at the feet. The results of the measurements can be useful in designing the motor frame and the construction of its appropriate fixity. It was found to be appropriate to reinforce the vertical walls of the motor feet. After reinforcement, the experimental modal analysis was repeated.

The information obtained from the investigation of the structural responses of the electrical motor will make it possible to apply the modal analysis to other electrical machines.

2. EXPERIMENTAL MODAL ANALYSIS

The asynchronous motor (Firm MEZ 3-MOT. 4 AP 90L-4, No 404844-0418, IP 54, IM 1081, 1.5 kW, 1410/min. 50 Hz, Δ/Y 230/440, ISOL. F, cosφ 0.82, 6.0/3.4A, 98/11) with excitation in the net of the measuring points of the structure was investigated (Fig. 1).

72 points in total were chosen on the surface of the motor frame; from those, 56 were on the cylindrical part in 7 transversal planes with 8 points on the circumference, 8 were at the upper part of the frame and 8 were at the feet. The results of the measurements can be useful in designing the motor frame and the construction of its appropriate fixity. It was found to be appropriate to reinforce the vertical walls of the motor feet. After reinforcement, the experimental modal analysis was repeated.

The structure was excited at point 2 by an impact hammer (Firm PCB) with a plastic adapter and with a piezoelectric force transducer 3086 Bo 1 sn 3439, PCB Piezoelectronics. At the other measuring points, the responses were measured by a releasable miniature sized accelerometer 309 A, PCB Piezoelectronics. Measuring was performed without moving the rotor. Mode shapes were determined from the computational animation of the frame motion.
Figure 1. Experimental modal analysis of a motor frame, (1-asynchronous motor, 2-fixityed measuring point, 3-impact hammer with piezoelectric force transducer, 4-preamplifiers, 5-A/D converter, 6-PC, 17-migratory points with miniature sized accelerometer)

Figure 2. The net of the 72 measuring points of a motor frame

At particular mode shapes of the motor frame, between measuring point 17 - direction x and impulse excitation point 2 - direction x, significant peaks of the transfer function of frequency (Fig. 3) occurred at:

1. Shape – 319 Hz (spatial oscillation),
2. Shape – 362 Hz (torsion oscillation),
3. Shape – 613 Hz (torsion oscillation),
4. Shape – 2010 Hz (blowing),
5. Shape – 3479 Hz (bending oscillation),
6. Shape – 4300 Hz (blowing).
Figure 3. The frequencies transfer of the motor frame between points 17 and 2

Figure 4. The frequencies transfer of the motor feet between points 69 and 2
From the animation, it follows that the motor feet of the frame displacement have maximum amplitudes. In the frequency range below 50 Hz in the feet of the motor frame, between measuring point 69 - direction x and impulse excitation point 2 - direction x, significant peaks of the transfer function of frequency 10, 23, 35 and 45 Hz (Fig. 4) occur. Therefore, new measurements of mode shapes in operation were performed.

Mode shapes were determined from the measurement points placed at the motor feet of the motor frame in revolutions that correspond to the above-mentioned frequencies. The miniature piezoelectric accelerometer 309 A and the miniature accelerometer PCD 338 B SN 2288, 94 mV/g ICP (at point 2) were placed at 8 measuring points (65-72). The motor was fixity on feet with screws to a steel plate with a mass of 60 kg.

3. CONCLUSIONS

Any physical system can vibrate. The frequencies and the modal shapes which the vibrating system assumes are properties of the system. The frequencies and modal shapes can be determined analytically using modal analysis.

Analysis of vibration modes is a critical component of a design, but is often overlooked. Structural elements such as the frame of the asynchronous motor can be particularly prone to perceptible vibration, thus disturbing sensitive equipment.

Inherent vibration modes in structural components or mechanical support systems can shorten motor life, and cause premature or completely unanticipated failure, often resulting in hazardous situations. Detailed fatigue analysis is often required to assess the potential for failure or damage resulting from the rapid stress cycles of vibration.

Operational deflection shapes in particular revolutions corresponding to detected frequencies were determined from computational animation of the frame (Fig. 5) to be:

- 10 Hz – vibration of the feet around the overall centre of feet, up and down in opposition,
- 22 Hz – vibration around the vertical axis,
- 35 Hz – vibration around the horizontal axis,
- 45 Hz – vibration of the feet around the overall centre of feet, up and down in an opposite phase.

From the animation, it follows that the motor feet have maximum amplitudes. The oscillation feet amplitudes have maximum values in the range of revolutions corresponding to the frequencies 10 Hz and 22 Hz. After sudden relief, the feet can fail at those frequencies.

The results can be useful for designing the motor frame and for the construction of the appropriate fixity. It is appropriate to reinforce the vertical walls of the motor feet. After reinforcement, the experiment by way of a modal analysis was repeated. The animation information obtained from the investigation of the electrical motor structural responses will make it possible to apply modal testing to other electrical machines such as transformers, generators, etc.

Part of the Bachelor’s study at the Czech Technical University in Prague in the Faculty of Electrical Engineering includes courses in measurements, electric drives and technical mechanics. The courses proceed on the basics, which the students receive in physics during their first two years of studies. These courses build their technical and practical knowledge. The students get to know solution methods of the dynamic systems with one and more degrees of freedom and the basics of materials science. This paper also presents the possibility of a multi-disciplinary study for students of modal analysis of asynchronous motor vibration.
Detailed modal analysis determines the fundamental vibration mode shapes and corresponding frequencies. This can be relatively simple for basic components of a simple system, and extremely complicated when qualifying a complex mechanical device. These systems require accurate determination of natural frequencies and mode shapes using techniques such as Finite Element Analysis.

REFERENCES