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Abstract 
 
In this work, the asymmetric stiffness based parametric instability problem of rotating shaft 
system is analytically analyzed and its rectifications are presented. The term responsible for 
the problem in the governing equation is explored to find out the parameters having the 
problem elimination or minimization potential. Two such analytical findings have been 
practically implemented and the problem has successfully been rectified.  

Although both the strategies qualified, yet one of them has an edge over the other in 
implementation, risk elimination and qualitative-quantitative results. The two strategies attack 
the problem from two different visions, one pre and the other post problem symptoms 
observation. The post problem symptoms observation strategy has constraints and can be 
implemented only to the rotating shafts which had survived in the initial testing while the pre 
problem sensing approach is independent of any problem symptom, much easy in 
implementation and unlimited survival rate. Hence the last one, the pre-emptive measure is to 
be preferred over the post. 

1. INTRODUCTION 

Since the start of era of high-speed rotating machines like turbines, multistage pumps, 
compressors, turbo generators etc, the instability problems are on the top of the scene posing 
critical threat to stability of rotating systems. There are various causes and categories of these 
instabilities and some of them are extremely dangerous. A number of researchers have 
analyzed the problem mostly within their problem domain. 

Ehrich [1] categorized various instabilities based upon their behaviour and possible 
causes. Ehrich [2] and Barrister [3] presented a mathematical treatise to elaborate the 
mechanics of the shaft whirl due to material internal damping. Bentley et al. [4] and Kimball 
[5] described the mechanics of instability due to rotor internal friction. Childs [6] covered the 
instabilities due to non symmetric clearance effect, while Ehrich [7] modelled the sub-
harmonics response of bearing clearance non linearity with low damping, whereas Vance [8] 
covered the torque whirl failure due to over hanged discs or wheels. Zvolanek [9] discussed 
the stability of unsymmetric rotor on an unsymmetric support.  Black et al. [10], Crandall et 
al. [11] , Brosens et al. [12], Foote et al. [13], Yamamoto et al. [14],  Peters et al. [15]  and 
Smith [16] analyzed the instability problem due to asymmetry of the rotors. 
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The rotating journals under study of the present authors were generally okay from the 
balancing criterion point of view, but still they were very critical while traversing up toward 
or down from the operational speed. By changing the combinations of rotor shaft, bearings, 
holding structure etc, it was assessed that problem is with the rotor shaft. The literature was 
surveyed and various causes of instabilities were reviewed in the light of rotor shaft based 
problems. It was thus assessed that rotor journal perhaps has the stiffness asymmetry problem. 
It was also assessed that the production process and human error are responsible for this 
limited inherent asymmetry. The authors concern was to rectify the problem rather than 
analytical or computerized simulation results analysis, discussions and results based 
rectifications’ suggestions. Thus the authors adopted mathematical analysis route which to the 
authors’ knowledge, none of the researcher opted so far.   The mathematical model of the 
system developed by Yamamoto et al. [14] was analyzed within this scenario for rectification 
of the problem through possible handling of the responsible parameters and it seems to be 
more direct and simplest approach leading to the desired goal. The adopted approach is 
discussed below. 

2. MATHEMATICAL SCENARIO OF THE PROBLEM 

Crandall et al. [11] and Brosens et al. [12] , Black et al. [10] and Smith [16] discussed rotor 
instability as a result of its stiffness asymmetry based upon the Euler angles and kinematical 
equations [17]   
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Here ψθϕ &,  are Euler angles and zYx ωωω &, or only ω are angular velocities 
about the three axes. Using following dimensionless quantities 
 
 
 
 
 
 
 
Here m, mass of the rotor shaft; Ip, polar moment of inertia; Ix and Iy moment of  the inertia 
about the lateral axes; yx I I2I += ; yx I- II2 =Δ  and δγα &, are spring constants of the 
shaft. Yamamoto et al. [14] arrived at their following normalized form after deriving rotor 
equation of motion with the help of Lagrange’s equation developed from kinetic and potential 
energy equations and dropping the prime in the final expression: 
             
  
 
 
 
 

0=++
••

   xx xγθ    

  0=++
••

  y y yγθ               (3) 

 ,i /II pp =               , /II Δ=Δ          ,′ = x1/2 x/(I/m)  
      

,′ = y1/2 y/(I/m)     ,′ = ωαω 1/2 /m)/(      ,′ = γαγ / /I)( 1/2m   
 

,′ = tt1/2 /m)(α   ,′ = δαδ  I)/(m                   (2) 



ICSV14 • 9-12 July 2007 • Cairns • Australia 

3 

pertaining to the linear motions and 
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pertaining to the angular motions. 

Here 2/πθω += zt  and the shaft angular velocity zθω
•

=  
 
The particular form of equation (4), if mathematically generalized becomes  
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 The coefficient ‘2n’ of ω means, that these equations hold for all integer values of ‘n’. 
This means that instability can occur only when natural frequency of the system is an even 
integer multiple of the rotor speed and never for odds i.e. these functions have instabilities 
only at all integer values of n. The lowest value of n i.e. n =1 pertains to sub-synchronous 
while higher values pertains to super–synchronous instabilities. In generalizing the equation 
(4), Smith [16] and Peters et al. [15] treated coefficient ‘2n’ of ω of equation (5) as ‘n’ and 
thus for an explicit even integer, they unknowingly introduced odd values too and then had to 
assign  some thing for its non occurring, which had explicit mathematical denial.   
 Further to this is, that if either sum or the difference of frequencies of any two 
components of a system [15] or only that of a component all alone [16], is an even integer 
multiple of the rotor speed, then this may give rise to resonance and hence the instability 
problem. 

3. PROBLEM IDENTIFICATION AND RECTIFICATION 

As discussed above, various instabilities and their root causes and symptoms discussed in 
literature were reviewed in the light of available information and observations and this review 
process guided towards the asymmetry of the rotor. With stiffness asymmetry in view, the 
generalized form of Yamamoto et al. [14] normalized rotor equation of motion (Eq. 5 above) 
was found to be more explicit and straight forward, hence it  was analyzed for possible 
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rectification of the problem. The 3rd term in these equations as shown below pertains to the 
instability under discussion.  
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The 2nd term pertaining to gyroscopic precession most probably may excite too by the angular 
motion resulting from consequences of the 3rd term, yet it is not the root cause of this problem 
and is not considered any more in this and will be addressed in separate work.  

For solution of this instability problem, either the influence of these expressions be 
counter balanced through damping or minimized through manipulations of parameters of 
these expressions. The damping can be increased to some extent and has limitations. An 
overview of these expressions show that all other parameters are out of reach and cannot be 
manipulated except their coefficient Δ  given by equations (2) above and reproduced as 
follows. 
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The smaller is the  ,Δ  the better will be the instability control. 

The overview of its expression shows that there can be two approaches, (i) reduce the 
numerator, (ii) increase the denominator. Both these strategies exploit this manageable 
parameter  Δ for solution of the problem as follows. 

3.1 Numerator Handling Strategy 

In the first strategy, the numerator is decreased either through decrease in 1I  or increase in 2I , 
both being proportional to stiffness [18] and this decreases the value of coefficient Δ , thus 
decreasing the amplitude of the excitation. The changes are achieved through relative 
differential increase or decrease in dimensions under centrifugal action of additional 
correction weights. 

The decrease in numerator is, however, not independent of denominator. Within this 
method, the 2nd approach, i. e. increase in I2 is both, mathematically and practically more 
effective, because it decreases the numerator along with increasing the denominator and these 
both contribute positively in reducing the coefficient Δ , whereas decreasing I1, decreases 
both the numerator and the denominator and decrease in denominator has negative effect, 
hence their ultimate role is thus slower. 

The 2nd option was hence adopted and after a number of trials, solution to the problem 
was arrived through disturbing the phase combinations of residual unbalance masses by 
applying the small disturbing masses. The strategy worked to some extent, but was much 
laborious and with very limited benefits as it could not be applied to all the rotors as most of 
them had not this problem and applying this strategy to them was to add undue unbalance. It 
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was thus applied only to critical rotors which could survive in the initial testing.  The method 
is both mathematically and practically less effective being a hit and trial approach.  

3.2 Denominator Handling Strategy 

In the second strategy, the denominator is increased though equal increase in both 1I  and 2I . 
In this way, the denominator is increased without changing the numerator. Thus coefficient Δ  
and hence the excitation is decreased without any change to the balancing criterion of the 
main rotor. And since the balancing criterion is not changed, the strategy can be applied to all 
the rotating journals irrespective of their imbedded instability without any risk generation.  
The achievement of this can be through any component of a rotating journal for example the 
driving shaft. This method is mathematically and practically more effective as compared to 
the first one being a direct approach without any constraint. 

3.3 Damping Solution Strategy 

The damping term in equations (3) and (5) has not been included, but if damping is increased, 
the amplitude of vibration will not increase rapidly in the critical zones.  

3.4 Cruising Through Critical Zone at Faster Pace 

The critical zones of a rotating journal are generally known by experience or can be 
analytically computed. The machine or journal while cruising towards or from the operational 
speed at a faster pace will have little time for resonance excitation build up and thus may pass 
through the dangerous zone well below the dangerous limit and hence the system will remain 
safe and this strategy is generally used in normal practice.  

4. CONCLUSIONS 

The problem due to un-symmetry of stiffness with respect transverse axes of the rotating 
journal has an important handle able node mathematically defined by 
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The greater is the value of this Δ , the critical is the problem. There are two approaches to 
minimize its value. One is to minimize the numerator, the other is to symmetrically increase 
the denominator, and these two conclude as follows. 
 
1. The denominator handling strategy i.e. increased overall stiffness of rotating journal is 

more effective, easy, rugged and has risk free application over the entire production 
range as compared to that of  numerator handling strategy. 

 
2. The numerator handling strategy has further two options i.e. decreasing the stiffness 

difference through increasing the smaller quantity or through decreasing the larger 
quantity. The option of increasing the smaller stiffness is relatively more effective both 
mathematically and experimentally. 

 
3. Both the solution strategies including their additional options are both scientifically and 

theoretically logical. 
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4. The degree of suitability and effectiveness of both the strategies and their additional 

options are mathematically well supported. 
 
5. Damping and cruising through critical zones at a faster rate are logical and have 

supporting behaviour. 
 
6. Peters et al. [15] statement based on Smith [16] prediction and his own practical 

experience that “an instability occurs when natural frequency of the system is an 
even integer multiple of the rotor speed and does not for odds” is mathematically 
supported and confirmed as the equations (5) hold only for integer ‘n’, enforced to even 
by the coefficient 2 as shown in equation (5). It rather ratifies the first part of their 
statement and negates altogether the existence of any form of their later option for 
which they had to give explanation of its miniature-ness.  
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