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Abstract 
 
This paper concerns the acceleration response of a vehicle traversing a road bump.  A linear 
viscously damped single degree of freedom model is adopted initially from which closed form 
expressions for the time response are obtained.  By assuming the impulse to be of short 
duration relative to the natural period, these expressions simplify to show that the peak 
acceleration response is approximately proportional to the damping ratio. 

Numerical simulations are then presented for two alternative damping models: a piece-
wise linear model, in which the damping ratio is different in the jounce and rebound 
directions; and a switchable damper that switches to a lower value during the impulse.  The 
piecewise linear damper delivers modest reductions in peak acceleration when, as is common 
practice in automotive dampers, the damping is less in jounce than rebound.  Larger 
reductions are achievable from the switchable damper and a simple approximate expression is 
given for the maximum possible reduction. 

1. INTRODUCTION 

A delicate payload must often be isolated from the base that supports its weight in order to 
reduce transmitted vibration.  In the case of road vehicles isolation usually takes the form of 
separate springs and dampers.  The inputs to the base of the suspension are often largely 
random in nature and can be characterised statistically by power spectral densities of the road 
roughness [1].  If linearity of the mechanical system can be assumed then the response is 
easily estimated from random vibration theory provided the transfer functions between the 
contact patch and receiver are known.  The response of nonlinear systems, on the other hand, 
can be computed by Monte Carlo simulation [2].  Road profiles, however, are not entirely 
random and feature transient events due to bumps, hollows, ramps, expansion gaps and, 
increasingly, speed humps [3].  The mean square response per unit frequency that random 
vibration theory predicts is not always the quantity of concern so much as the peak 
acceleration.  This is especially true in the case of isolating vehicle occupants since human 
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discomfort from shock inputs is disproportionate [4]. 
Acceleration shock response has been considered by many researchers, most notably for 

single degree of freedom (SDOF) systems in much earlier literature where closed form 
solutions were more readily sought.  Snowdon used Laplace transforms to solve for the 
acceleration response due to rounded step-like and pulse-like displacements with finite rise 
times [5].  The shock spectra for a range of other input shapes are presented in [6], although 
only for the undamped case. 

This paper is concerned with the acceleration response of a road vehicle to a symmetric 
bump-shaped transient displacement input and adopts the Laplace transform approach as in 
[5].  The principle aim is to gain further understanding of the effect of damping on peak 
acceleration levels.  A viscously damped SDOF system is chosen which, although only 
representative below the frequency of the wheel-hop mode, enables an insightful closed form 
solution to be obtained. 

Automotive dampers are most commonly passive hydraulic devices whose 
characteristics are chosen “once and for all” so as to achieve an appropriate compromise 
between ride comfort and other performance criteria such as road holding, handling and 
control.  In practice, this leads to a distinctly non-linear force-velocity curve exhibiting higher 
damping in extension than compression.  A ratio of about 3:1 is often purported on the basis 
of numerical optimisation [2] or empirical grounds [5,7].  A more favourable compromise can 
be achieved by semi-active damping [8,9] in which the damping coefficient is modulated 
either gradually or in real time according to the observed vehicle response.  Cost, weight and 
reliability issues count against such systems except where significant performance gains can 
be demonstrated. 

In the first part of the paper it is shown that the shock response of a vehicle is 
predominantly due to the damper force during the impulse.  For transient inputs at least this 
suggests that the peak acceleration may be reduced by switching the damper to a lower value 
during an impulse.  The second part of the paper investigates the potential benefits of a 
switchable damper of this type.  Numerical simulations are presented for a SDOF system to 
illustrate the improvement over a linear damper, and a simple expression is obtained in closed 
form for the maximum possible reduction in peak acceleration.  The results are also contrasted 
with those of a piece-wise linear damper model which is used elsewhere in the literature to 
represent the dual-rate characteristic of the typical automotive damper [2,8,10].

2. SDOF VEHICLE MODEL TRAVERSING A VERSED SINE BUMP 
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Consider the linear viscously damped 
SDOF quarter car model shown in Fig. 1.  
When the system traverses a road bump a 
displacement y is applied to the base of the 
spring and damper causing a displacement 
x of the mass.   

Both displacements are written as 
functions of non-dimensional time, 

 

Figure 1.  A damped SDOF system subject to a 
versed sine-shaped base displacement 

ˆ tt
τ

=  (1) 

where τ is the duration of the impulse, and the displacements are themselves non-
dimensionalised by the peak input displacement h as follows: 
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ˆ xx
h

=                     ˆ yy
h

=  (2a,b) 

Then the equation of motion for the mass can be written as 
2

2

1 1 ˆˆ ˆ ˆ4 4z πζ z π z
r r

+ + = y−  (3) 

where  is the non-dimensional relative displacement, ˆ ˆẑ x y= − 2ζ c m= k  is the damping 
ratio and 

Tr
τ

=  (4) 

is the ratio of natural period T to impulse duration.  Of primary interest in this study are 
impulses of relatively short duration such that 1 10r< < .  When , the wheel-hop mode 
is typically important and the SDOF model is invalid. 

10r >

The choice of pulse input to represent a road bump is to some extent arbitrary.  A versed 
sine impulse is chosen here, 

( ) ( )1
2

ˆ ˆ1 cos 2 0 1ˆˆ
ˆ0 1

πt t
y t

t

⎧ − ≤⎪= ⎨
>⎪⎩

≤
 (5) 

whose derivative is continuous thus ensuring a finite acceleration input for all time.  (The 
response of an undamped SDOF system to a versed sine input is given in [3]).  Substituting 
for  into Eq. ( )ˆŷ t (3) gives the equation of motion of the system due to a versed sine base 
displacement as 

2
2

2

ˆ ˆ2 cos 2 , 0 11 1ˆ ˆ ˆ4 4
ˆ0 1

π πt t
z πζ z π z

r r t
⎧− ≤

+ + = ⎨
>⎩

≤

1

 (6) 

Herein, it is assumed that a point contact is maintained between the wheel and the road 
at all times.  Second order ordinary differential equations of the form of Eq. (6) are easily 
solved by numerical methods.  In this case, an analytical solution is possible by application of 
Laplace transforms which yields rather more physical insight into the system. 

The peak acceleration during the impulse ( ˆ0 t≤ ≤ ) is the focus of this paper, and is 
given by 

( ) ( )2
ˆ ˆh ˆx t x

τ
= t  (7) 

where 
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and 
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Other quantities of interest such as absolute and relative displacement during and after 

the impulse are readily obtainable in closed form.  However, for brevity, their expressions are 
omitted and an illustrative example presented instead. 

Fig. 2(a) to (d) show the displacement input along with the resulting displacement, 
relative displacement and acceleration time responses for a system with a damping ratio of 
0.25 subjected to an impulse of short duration ( 5r = ).  The results are indistinguishable from 
those obtained using Runge-Kutta direct numerical integration (not shown).  Figure 2(c) 
shows that the road input is largely absorbed by the spring, but significant residual 
displacement is apparent in Fig. 2(b) after the impulse.  Conversely, the acceleration is largest 
during the impulse, Fig. 2(d). 
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Figure 2.  Transient response of a SDOF system with a natural period of 5 times the impulse duration 
( ) and damping ratio of 0.25 to a versed sine base displacement input. (a) displacement input; (b) 
displacement response; (c) relative displacement response; and (d) acceleration response. 

5r =

3. APPROXIMATE SOLUTIONS FOR SHORT IMPULSES 

The closed form solution presented in the previous section for the response of a SDOF system 
to a versed sine shaped displacement input is too complicated to exhibit any simple 
relationships between the acceleration response and the parameters of the system and 
excitation such as damping ratio, natural period and impulse duration.  However, useful 
approximations may be obtained in the case when the natural period is much longer than the 
impulse ( ).  Expanding Eq. 1r (8) and (9) for small 1 r  and rearranging gives 
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( ) ( ) ( ) ( )
2 22 2 2 2

2 3

2 1ˆˆ 1 4 4 sin 2 1 4πx t ζ ζ r πt φ ζ O
r r

⎛⎛≈ − + − + − +⎜ ⎜
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where 
21 4arctan

2
ζφ
ζr

−
=  (11) 

This is a phase shifted sinusoid with an offset, from which it is clear that the maximum 
and minimum values of acceleration occur when 

1ˆ
4 2

φt
π

= +     and     3ˆ
4 2

φt
π

= +  (12a,b) 

respectively, and are given by 
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If 1
2ζ <  then the peak 

accelerations (maximum and minimum) 
occur slightly later than ¼ and ¾ of the 
way through the impulse and it is the 
maximum acceleration that is largest in 
magnitude.  If 1

2ζ >  then the peak 
accelerations occur slightly earlier than 
¼ and ¾ of the way through the impulse 
and it is the minimum acceleration that is 
largest in magnitude.  

Figure 3 shows the peak 
acceleration as a function of r, as given 
by the second order approximation in 1 r  
from Eq. (13).  The damping ratio of the 
system is 0.25.  These approximate 
solutions are compared with numerically 
obtained peaks from the exact analytical 
time responses.   

Figure 3.  Peak normalised acceleration as a 
function of the ratio of the natural period to the 
impulse duration for a damping ratio of 0.25.  – 
exact solution; -- second order approximation (Eq. 
17);  ּ ּ -  first order approximation (Eq. 19) 

 
Also shown is a first order approximation which is obtained by making the additional 

assumption on the natural period that 22 1 4ζr ζ− .  The acceleration time response 
becomes 

( )
24 ˆˆ sin 2π ζx t πt

r
≈  (14) 

and the peak acceleration values are given simply by 

( )
2

max
min

4ˆ π ζx t
r

≈ ±  (15) 

From Fig. 3 it can be seen that when 0.25ζ = , the second order approximation given in 
Eq. (13) is in close agreement for the range of interest, 1 10r≤ ≤ .  The first order 
approximation from Eq. (15) is qualitatively correct from which it is apparent that the peak 
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acceleration is approximately proportional to damping ratio and inversely proportional to 
natural period. 

Unsurprisingly, the peak acceleration is observed to be highest when the natural period 
is comparable to the impulse duration ( ).  When the natural period is much shorter than 
the impulse duration, the peak acceleration is observed to be largely insensitive to natural 
period.  In the limiting situation of a rigid suspension, the acceleration of the mass is the same 
as that of the road input, which is given by the right hand side of Eq. 

~ 1r

(6).  It follows that the 
peak normalised acceleration in this case is given by 

2max
2 2x π

h τ
=  (16) 

For impulses of long duration compared to the natural period the peak acceleration is 
approximately proportional to the square of vehicle speed and only weakly dependent on 
stiffness and damping. 

4. SHOCK RESPONSE OF A SDOF SYSTEM WITH SWITCHABLE DAMPER 

For shocks of short duration compared with the natural period, the peak acceleration occurs 
during the bump and, by Eq. (15), its magnitude is approximately proportional to the damping 
ratio.  It may be argued that, for a single transient displacement input, the peak acceleration 
may be reduced by switching from a high damping ratio  to a low damping ratio, α  times 

, during the input to minimise transmitted forces to the mass, i.e. 
Ξ

Ξ

( )
ˆΞ 0ˆ
ˆΞ 1

α t
ζ t

t
⎧ 1< <

= ⎨
>⎩

 (17) 

Here, α is a constant and will be referred to as the damping reduction factor.  Issues regarding 
feasibility and practicability of implementing such a damper in a semi-active manner are 
acknowledged by the authors but not addressed in this paper.  Instead, the objective is to 
assess the maximum potential benefit of such an ideal damper in reducing peak acceleration 
to inform judgement as to whether implementation of such a damper is worth pursuing 
further. 

The performance of this switchable damper is compared with that of a piecewise linear 
damping model which is a commonly adopted to represent a conventional automotive damper 
[2,8,10].  The damping ratio is assumed to switch instantaneously between high and low 
values according to the sign of the relative velocity across the damper, i.e. 

( )
Ξ 0
Ξ 0
α x y

ζ t
x y
− <⎧

= ⎨ − >⎩
 (18) 

The SDOF model described in Section 2 was extended to include each of these damping 
models in turn, and the acceleration response due to a versed sine base displacement input 
was calculated by direct numerical integration of the equation of motion. 

Figure 4 shows graphs of the peak acceleration as a function of damping reduction 
factor, α, for both the piece-wise linear damping model and the switchable damper.  The 
results have been normalised by the case of a linear damper ( 1α = ) set to the unreduced 
damping ratio, Ξ , which is 0.25 and 0.50 in Fig. 4(a) and 4(b) respectively.  In both cases, the 
piecewise linear damper provides a modest reduction in peak acceleration compared with a 
linear damper; about 20% for example for a typical damping reduction factor in the region of 

.  The performance of the switchable damper is almost identical in the case of low 
damping (Fig. 4(a)) unless , in which case some additional benefit is apparent.  For 

0.3α =
0.6α <
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Ξ 0.5=  in Fig. 4(b), the switchable damper is beneficial provided that , i.e. that the 
damping is reduced rather than increased during the impulse.  The maximum benefit is 
obtained by switching off the damper altogether during the impulse ( ).  Whilst this is 
unfeasible in reality due to other performance constraints, it provides a useful upper bound on 
what might be achievable. 

1α <

0α =
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(a) Unreduced damping ratio, Ξ  0.25= (b) Unreduced damping ratio, Ξ  0.50=
 
Figure 4.  Peak acceleration as a function of damping reduction factor for a SDOF system with a 
natural period such that (  – piecewise linear damper; -- switchable damper). 10r =
 

The contour plot shown in Fig. 5(a) depicts the factor by which the peak acceleration 
may be reduced by switching off the damper during the impulse ( 0α = ) compared with a 
linear damper.  The benefit is significant only for impulses of short duration,  say, and 
improves as damping increases. 

5r >
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Figure 5.  Reduction factor in peak acceleration by switching off the damper during the impulse 
compared with a linear damper.  (a) numerical integration; (b) simple approximation, 1 ζr  
 

A corresponding closed form approximation can be obtained by noting that, for large r, 
the peak acceleration occurs during the impulse.  Consequently, the peak acceleration for a 
switchable “off-on” damper is the same as that of an undamped system.  Setting  in Eq. 0ζ =
(10) gives the acceleration response during a short impulse as  
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( ) (
2

2

2 ˆˆ 1 cos 2πx t πt
r

≈ − )  (19) 

which features a peak acceleration of magnitude 2 24π r .  The peak acceleration due to a 
linear damper, by comparison, is approximately given by Eq. (15) to be 24π ζ r .  Then the 
factor by which the peak acceleration may be reduced is the ratio of these quantities, i.e. 1 ζr .  
The corresponding contour plot of this estimate to the reduction factor is shown in Fig. 5(b).  
The results are qualitatively similar to those obtained by numerical integration in Fig. 5(a) and 
quantitatively meaningful for larger values of . ζr

5. CONCLUDING REMARKS 

The response of a road vehicle to a transient input such as a bump is critically dependent on 
the characteristics of the dampers.  In this paper, the effect of a linear damper has been 
investigated in the first instance.  A single degree of freedom system has been adopted and 
closed form solutions presented for its time response due to a versed sine shaped base input.  
By assuming that the input is short compared to the natural period of the system simple 
expressions have been obtained for the peak acceleration in terms of the damping ratio and the 
ratio of natural period to impulse duration.  Next, numerical simulations have been presented 
for the shock response of the system when the damper is switched to a lower value during the 
impulse. Such a damping mechanism is seen to reduce the peak acceleration when compared 
with either a linear or piecewise linear damper, and is most beneficial for vehicles with a large 
damping ratio and impulses of short duration. 

Further work is required to consider the practicality of implementing a semi-active 
control system of this nature, and in assessing its impact on other performance criteria such as 
road handling and limited rattle space. 
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