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Abstract

The calculation of the coupled response of a structure with an enclosed acoustic cavity is of
great interest, with many practical applications in the automotive and aerospace industries. Tra-
ditional methods such as a fully coupled fluid-structure interaction finite element calculation can
be very computationally expensive, and methods have been proposed that reduce this computa-
tional burden and make it possible to include iteration and optimisation in the design process.
This paper compares the performance of two such reduced order model (ROM) methods, a tra-
ditional modal coupling technique and an implicit moment matching method via Arnoldi, with
a fully coupled finite element calculation. A simple model, a square simply supported steel plate
backed by a rigid walled cavity is used as an example, and the accuracy of each method is exam-
ined for both damped and undamped cases. It was found that Arnoldi gave excellent agreement
with the fully coupled calculation, and that while modal coupling gave excellent agreement near
resonance, the performance off resonance was dependent on the number of modes retained.

1. INTRODUCTION

The coupling between a structure and an internal acoustic cavity is a problem in many indus-
tries and in particular, it can cause Noise Vibration and Harshness (NVH) issues in road [1]
and aerospace vehicles, even to the extent of damaging expensive satellites during launch [2].
The problem is becoming worse as the structural mass is reduced in an effort to improve the
efficiency of transport systems.

Designers often use a finite element calculation of the coupled system to predict the sound
levels found in the acoustic cavity. A finite element model involving structural and acoustic
elements is formulated, with coupling between the structural and pressure degrees of freedom,
resulting in unsymmetric stiffness and mass matrices. This large matrix is then subsequently
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solved at each frequency in order to predict the response of the system. This process, called the
fully coupled finite element method, can be very computationally intensive and hence unsuitable
for inclusion in iterative design processes such as design optimization.

A number of techniques have been proposed to speed up the solution of this method [1].
The well known modal coupling technique [3–6], presented by Fahy [7] is one such method.
This uses the in vacuo modal responses of a structure and hard walled acoustic modal response
of a cavity and combines them into a coupled vibro-acoustic response. The advantage of using
modal-coupling theory is that the computation time is significantly reduced, even though the
numerical results are almost identical.

More recently, however, model order reduction (MOR) via implicit moment matching has
received considerable attention among mathematicians and the circuit simulation community
[8, 9]. In this approach, a reduced order model is generated by matching the higher dimensional
system moments via Krylov subspace based projection techniques. It has been shown in various
engineering applications [10–13] that the time required to solve reduced order models via MOR
is reduced significantly when compared to solving the original higher dimensional model, whilst
maintaining the desired accuracy of the solution.

This paper presents results from a collaboration between The University of Adelaide, who
have experience with modal coupling [14], and Oxford Brookes University, who have applied
Arnoldi based reduced order modeling techniques to fully coupled structural-acoustic analysis
and optimization problems[15]. This initial work presents results from both reduced order mod-
eling techniques, applied to a very simple numerical model, for both damped and undamped
cases. The rest of the paper is laid out as follows. Section 2 outlines Cragg’s fully coupled
FE/FE displacement/pressure formulation and briefly describes the theory behind two differ-
ent reduced order modeling (ROM) approaches, the uncoupled modal coupling approach and
implicit moment matching via the Arnoldi process. In section 3 a simple numerical example
is chosen and solved using the three different approaches outlined in section 2. Section 4 con-
cludes the paper with a general discussion of numerical results focusing on the accuracy of the
ROM approaches, and highlights potential directions for future research.

2. THEORY

2.1. Fully Coupled FE/FE Formulation

Starting with the well known combined displacement-pressure (u/p) formulation for the structural-
acoustic model as a whole [16][
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where Ms is the structural mass matrix, Ma is the acoustic mass matrix, Ks is the structural
stiffness matrix, Ka is the acoustic stiffness matrix, Mfs is the coupling mass matrix, and Kfs
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is the coupling stiffness matrix, Cs is the structural damping matrix, Ca is the acoustic damp-
ing matrix, u denotes the structural displacements, p denotes the nodal pressures in the fluid
domain, and Fs and Fa denote the force(s) on the structural domain, or constrained acous-
tic pressure degrees of freedom (DOFs) and purely acoustic excitation, in the form of volume
acceleration belonging to the fluid domain respectively. Ksa, Msa, Csa are the fully coupled
structural-acoustic matrices of order N ×N . Fsa denotes the structural, acoustic excitation and
is of an orderN×m, withm being the number of inputs to the system (for single input,m = 1).
y(t) is the output measurement vector and the matrix LT is the output scattering or the so called
field point matrix, which is an identity matrix, of orderN × N , in the case of a complete output
of states (which in this case are displacements and pressures) being required.

Although there exist several techniques to reduce system matrices with [C], in this paper,
we restrict ourselves to constant structural damping. The finite element software ANSYS for-
mulates constant damping via the commands DMPRAT and MP, DMPR which adds imaginary
terms to the stiffness matrix according to the relationship [17] βc = 2ζ/Ω where βc is the con-
stant multiplier applied to the structural parts of the coupled stiffness matrix Ω is the frequency
in rad/s and ζ is the constant damping ratio.

In the direct method, the global matrices belonging to Eq. (1a) are assembled and the set of
linear equations solved (in the frequency domain) at all frequencies of interest. Typically, sparse
direct solvers [17] are employed to perform a LU decomposition at each frequency, which are
then subsequently used to compute the desired values of states of Eq. (1a).

2.2. Modal coupling

Fahy [7, p249] describes equations for the coupled structural-acoustic response of a system in
terms of the summation of structural and acoustic mode shapes. The structural displacement is
described in terms of a summation over the in vacuo normal modes as

w(rs) =
∞∑

p=1

wp φp(rs) (2)

where φp is the mode shape of the pth structural mode, rs is an arbitrary location on the surface
of the structure, and wp is the modal participation factor of the pth mode. Note that the time
dependent term ejωt has been removed from this equation and others in the paper to simplify
the analysis.

The acoustic pressure is described in terms of a summation of the acoustic modes of the
fluid volume with rigid boundaries as

p(r) =
∞∑

n=0

pn ψn(r) (3)

where ψn is the acoustic mode shape of the nth mode, r is an arbitrary location within the volume
of fluid, and pn is the modal participation factor of the nth mode. Note that the n = 0 mode is
the acoustic bulk compression mode of the cavity that must be included in the summation.
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The equation for the coupled response of the structure is given by [7, Eq. (6.27)]

ẅp + ω2
p wp =

S

Λp

∑
n

pnCnp +
Fp

Λp

(4)

where ωp are the structural resonance frequencies, Λp are the modal masses, Fp are the modal
forces applied to the structure, S is the surface area of the structure, andCnp is the dimensionless
coupling coefficient given by the integral of the product of the structural (φp) and acoustic (ψn)
mode shape functions over the surface of the structure, given by

Cnp =
1

S

∫
S

ψn(rs)φp(rs) dS (5)

The equation for the coupled response of the fluid is given by [7, Eq. (6.28)]

p̈n + ω2
n pn = −
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)
Q̇n (6)

where ωn are the resonance frequencies of the cavity, ρ0 is the density of the fluid, c is the speed
of sound in the fluid, Λn is the modal volume, andQn is the source strength with units of volume
velocity (hence Q̇n has units of volume acceleration).

The in vacuo structural and hard walled acoustic modes are calculated using a finite ele-
ment package, and Ns structural and Na acoustics modes are retained.

The equations for the fully coupled vibro-acoustic system, can be formed into a matrix
equation using Equations (4), (5), and (6) as[

A −S C
−S ω2 CT B

] [
wp
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]
=
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]
(7)

where A is a (Ns×Ns) diagonal matrix with elements App = Λp(ω2
p−ω2) and B is a (Na×Na)

diagonal matrix with elementsBnn = Λn/ρ0c
2 (ω2

n−ω2). The off diagonal elements account for
the cross coupling between structure and fluid, where C is a (Ns × Na) matrix with individual
entries given by the elements of Cnp. This matrix can be solved by matrix inversion techniques
to find the coupled modal participation factors, and hence the coupled response of both the
structure and cavity. Damping can easily be added on a modal basis [7, 14].

2.3. Model Order Reduction

Ignoring damping and rewriting Eqs. (1a,1b) using Laplace transforms, in terms of the input
U(s) and output Y (s) which are related by the transfer function H(s) = [Y (s)/U(s)], gives

H(s) = LT (s2Msa +Ksa)−1Fsa (8)

Expanding Equation (8) using the Taylor series about s = 0 results in

H(s) = LT (s2K−1
sa Msa + I)−1K−1

sa Fsa =
∞∑
i=0

mis
2i (9)
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where, mi = (−1)iLT (K−1
sa Msa)iK−1

sa Fsa are called the moments of H(s). By matching some
of these moments about s = 0, the reduced order model can be constructed, as it directly relates
the input to the output of the system. Therefore, a reduced order model is now sought, which
matches the higher dimensional coupled system moments. This can be achieved by choosing q
basis vectors stored in a column matrix [V ] (of order N × q), and then applying a subsequent
Galerkin projection [18] on the higher dimensional system matrix (of order N × N ) leads
to a reduced order model (of order q × q), which for the coupled structural-acoustic case the
approximation can be expressed as{

u

p

}
=
{
x
}
≈ V z + ε (10)

where {x} contains the pressures and displacements to be approximated, and a small error
parameter ε resulting from the projection to generalized co-ordinates. This form is often denoted
as the change of state co-ordinates. In this work, we choose vectors for projection belonging
to the Krylov subspace in order to provide the moment matching property [19]. Given a matrix
[A] and a vector g, a Krylov subspace of order q is defined by

Kq(A, g) = span(g, Ag, ....Aq−1g) (11)

2.3.1. The Arnoldi Algorithm

To ensure numerical stability while building up the Krylov subspace Kq(A, g) and that an or-
thogonal basis is constructed for the given subspace, the Arnoldi algorithm is used in this work
to generate candidate vectors containing moments of the coupled higher dimensional system
matrices. Given a Krylov subspace, the Arnoldi algorithm finds a set of vectors with norm one,
that are orthogonal to each other, given by [8, 9, 18]

V TV = I and V TAV = Hq (12)

where [Hq] is a block upper Hessenberg matrix, and is an orthogonal projection of [A] onto
the Krylov subspace defined in Eq. (11). Figure 1 gives the simplified single-input, single-
output/complete output (SISO/SICO) version of the implemented Arnoldi algorithm. For the
fully-coupled structural-acoustic problem described, we have (for s = 0)

A = K−1
sa Msa, g = K−1

sa Fsa ; V TK−1
sa MsaV = Hq and V

TV = I (13)

The initial dimension of q is chosen such that the input-output behaviour of the coupled system
is well represented. In this case, since only q moments are matched, the approximation is said
to be a Padé-type approximant. Once the projection matrix [V ] is found, [Hq] is discarded and
a Galerkin projection

∏
= [V ][V ]T on undamped Eqs. (1a,1b) subject to harmonic excitation

generates a reduced order model in second order form, given by

[−ω2[Mrsa] + [Krsa]]{z} = {Frsa} (14a)

yrsa(ω) = LT
rsaz(ω) (14b)
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Input: System Matrices Ksa,Msa,Fsa,LT and q (Number of vectors)
and expansion point s, in this case s = (ωe + ωb)/2

Output: q Arnoldi vectors belonging to the Krylov Subspace
0. Set v∗1 = g

1. for i = 1→ q do :

1.1 Deflation Check: hi,i−1 = ‖vi‖
1.2 Normalization: vi = v∗i /hi,i−1

1.3 Generation of next vector: v∗i+1 = Avi

1.4 Orthogonalization with old vectors for j = 1→ i do :

1.4.1 hj,i = vT
j v∗i+1

1.4.2 v∗i+1 = v∗i+1 − hj,ivj

2. Discard resulting Hq and project Msa,Ksa,Fsa,LT onto V to obtain
reduced system matrices [Mrsa],[Krsa],{Frsa},LT

rsa

Figure 1. Complete SISO/SICO Arnoldi process [8, 9]
.

where [Mrsa] = V TMsaV ; [Krsa] = V TKsaV ; {Frsa} = V T{Fsa}; LT
rsa = LTV .

The dimension reduction from N × N −→ q × q (where q � N ) is now achieved, and
the harmonic simulation of Eqs. (14a,14b) is much faster than Eqs. (1a,1b).

3. NUMERICAL TEST CASE

The test structure is a 1m × 1m steel plate constrained at the edges normal to the plate (in other
words simply supported), backed by a rigid walled cavity of dimensions 1m × 1m × 1m. The
harmonic analysis of the coupled equations were solved using three approaches: (a) the direct
method using the ANSYS FE solver, which in-turn employs the LU decomposition method for
all defined substeps; (b) MOR via the SISO/SICO Arnoldi algorithm; and (c) Modal Coupling
(Full and Truncated). Two different structural damping values were used for the analysis (a) ζ =
0 and (b) ζ = 0.03, and no acoustic damping was included. A constant amplitude force excitation
of 1N, over the frequency range from 0 to 300Hz, was applied at one of the off-centre nodes
(0.25m,1m,0.65m) of the structural FE mesh as shown in Figure (2a). A total of 8400 elements
were used for the coupled FE model.

1

platecavity                                                                     
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Figure 2. (a) Fully coupled structural-acoustic FE/FE model, (b) ANSYS and Modal Coupling predic-
tions for various numbers of retained modes and (c) ANSYS and Arnoldi predictions for 30 vectors.

In the moment matching approach, 30 basis vectors for matching the coupled system
moments are computed by applying the Arnoldi algorithm described in the previous section.
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For the modal coupling approach, the uncoupled modal responses are calculated using
Finite Element Analysis, with structural and acoustic eigenvalue decompositions calculated se-
quentially. Modes were extracted to frequency 1.5 times higher that the maximum frequency
considered in the analysis, giving a total of 34 retained modes. These modal responses are used
in the modal-coupling theory to calculate the coupled vibro-acoustic response of the system.

The structural receptance transfer function (normal displacement over input structural
force) at the driving point (0.25m,1m,0.65m) and a noise transfer function (cavity pressure over
input structural force) at positions (0.5m,0.5m,0.5m) and (0.75m,0.75m,0.25m) inside the box
were specified as outputs for the analysis. The results for the undamped and damped cases are
presented in Figure 3.
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Figure 3. (a,b,c) Undamped (ζ=0), (d,e,f) Damped (ζ=0.03) ANSYS, Arnoldi and Modal Coupling pre-
dictions (a,d) point displacement FRF, (b,e) pressure FRF at (0.5m,0.5m,0.5m) and (c,f) pressure FRF at
(0.75m,0.75m,0.25m).

4. DISCUSSION AND CONCLUSION

Figures 2c and 3 indicate that the reduced order model generated via the moment matching leads
to excellent accuracy over the entire frequency range. The moments in the test case shown are
matched at approximately half of the analysis range. If a Taylor series expansion is considered
around a higher frequency, a reduced order model could be obtained with better approximation
properties around that frequency range. The modal coupling approach gives good accuracy at
resonance and poor accuracy off resonance, compared with the direct method. This phenomena
is due to residues from truncated modes and is well documented [7]. For many applications,
the contribution of the prediction off resonance may be minor (e.g. active control [14]). The
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effect of including more modes in the Modal Coupling method can be seen in Figure 2b. The
accuracy of the prediction is improved, but it is still does not compare to the accuracy of the
Arnoldi approach.

The current work focused on the accuracy of the ROM approaches. In terms of future
work, generating ROMs with different loading conditions (e.g. acoustic excitation) would lead
to a better understanding of the advantages and drawbacks of different ROM approaches. A
comparison between total computational times is worth pursuing in the future. An accuracy
comparison of derived secondary field variables (e.g. fluid velocity) from the primary field
variable via different ROM approaches would further enhance the clarity of situations pertaining
to the application of such reduced order models for fully coupled structural acoustic analysis.
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