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Abstract

Sofar works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is
not correct as sound has vector nature. When sound propagates in fluids it can be approximated
as a scalar wave as there is no polarization. But when sound propagates in solids, its vector na-
ture has to be considered as polarization occurs and transverse wave as well as longitudinal wave
will appear. Vector theory is especially needed when the obstacle size is smaller than the wave-
length. We use the Smythe-Kirchhoff approach for the vector theory of diffraction.Comparing
the result with the scalar Kirchhoff approximation, we find that both contain the same diffrac-
tion distribution factor and the same dependence on wave number. But the scalar result has no
azimuthal dependence whereas the vector expression does. The azimuthal dependence variation
comes from the polarization properties of the field and must be absent in a scalar approximation.
We use the analogy of the sound velocity as equivalent to the magnetic field and the acoustic
stress field as equivalent to the electric field to convert our result from the electromagnetic case
to the acoustic case. We then derive the image formation theory based on the vector diffraction
theory. We use the angular spectrum approach. We found the existence of the components of
the angular spectrum known as evanescent waves. These waves are more properly treated in a
vectorial approach. We then discuss the effect of polarization on acoustical imaging.

1. INTRODUCTION

So far works on ultrasonic diffraction imaging are based on scalar theory of sound waves. This is
not correct as sound has vector nature. When sound propagates in fluids it can be approximated
as a scalar wave as there is no polarization. But when sound propagates in solids, its vector
nature has to be considered as polarization occurs and both transverse wave and longitudinal
wave will occur which travel at different velocities. Vector theory is especially needed when
the obstacle size is smaller than the wavelength. This will produce better information on the
objects details and better image resolution. Vector theory also provides a study on the effect of
polarization on acoustical imaging.
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2. DERIVATION OF THE VECTOR ACOUSTIC WAVE EQUATION FOR
SOLIDS

We will start with the vectorial Kirchhoff approximation for diffraction and scattering.
The acoustic stress field ~T is analogous to the electric field ~E in the electromagnetic

theory. We begin with the solution for the scalar wave function ψ:

ψ(~x) =

∮

S

[
ψ(~x′)~n′ · ∇′G(~x, ~x′)−G(~x, ~x′)~n′ · ∇′ψ(~x′)

]
da′ (1)

where~(n′) is an inwardly directed normal to the surface S. We then use (1) for each rectangular
component of ~E and write the obvious vectorial equivalent:

~E(~x) =

∮

S

[
~E(~n′ · ∇′G)−G(~n′ · ∇′) ~E

]
da′ (2)

provided the point ~x is inside the volume V bounded by the surface S.
(2) can be rewritten in this form:

O =

∮

S

[
2 ~E(~n′ · ∇′G)− ~n′ · ∇′(G~E)

]
da′

The divergence theorem can be used to converty the second term into a volume integral,
thus yielding

O =

∮

S

2 ~E(~n′ · ∇′G)da′ +
∫

V

∇′2(G~E)d3x′

With the use of ∇2 ~A = ∇(∇ · ~A)−∇× (∇× ~A) for any vector field ~A, and the vector
calculus theorems,

∫

V

∇φd3x =

∮

S

~nφda (3)
∫

V

∇× ~Ad3x =

∮

S

(~n× ~A)da

where φ and ~A are any well-behaved scalar and vector functions, we can obtain

O =

∮

S

[
2 ~E(~n′ · ∇′G)− ~n′ · ∇′(G~E) + ~n′ × (∇′ × (G~E))

]
da′ (4)

Carrying out the indicated differentiation of the product G~E, and making use of the
Maxwell equations, ∇′ · ~E = 0, ∇′ × ~E = iω ~B, we find

O =

∮

S

[
iω(~n′ × ~B)G + 2 ~E(~n′ · ∇′G)− ~n′ · ∇′(G~E) + ~n′ × (∇′ × (G~E))

]
da′
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Expansion of the triple cross product, and a rearrangement of terms yields this result,

~E(x) =

∮

S

[
iω(~n′ × ~B)G + (~n′ × ~E)×∇′G + (~n′ · ~E)∇′G

]
da′ (5)

Equation (5) is the vectorial equivalent of the scalar formulation (1) with

G −→ eikr′

4πr′
eiK ~n′·~x

and its gradient by

∇′G −→ −iK~n′G

The following vector Kirchhoff integral relation can be obtained:

~E(x) =

∮

S

[
iω(~n′ × ~B)G + (~n′ × ~E)×∇′G + (~n′ · ~E)∇′G

]
da′ (6)

For the acoustic fields, ~E is equivalent to ~T and ~H is equivalent to ~V , the velocity field
and

~T (x) =

∮

S

[
iω(~n′ × ~V )G + (~n′ × ~T )×∇′G + (~n′ · ~T )∇′G

]
da′ (7)

3. PRACTICAL EXAMPLE OF THE APPLICATION OF THE VECTOR
DIFFRACTION FORMULA

The generalized Kirchhoff integral for Neumann boundary condition is

ψ(~x) = −
∫

S1

∂ψ

∂n′
(~x′)GN(~x, ~x′)da′ (8)

The vector relation for(8) is

~Ediff (~x) =
1

2π
∇×

∫

apertures

(n× ~E)
eiKR

R
da′ (9)

or
~Tdiff (~x) =

1

2π
∇×

∫

apertures

(n× ~T )
eiKR

R
da′ (10)

for the acoustic case. The first example is diffraction by a circular aperture [1]. We consider
Fraunhofer diffraction when the observation point is far from the diffracting system, eqn. (10)
reduces in this limit to

~T (~x) =
ieiKr

2πr
~K ′ ×

∫

S1

~n× ~T (~x′)e−iKRda′ (11)

We consider a plane wave incident at an angle α on a thin, perfectly elastic screen with a circular
hole of radius a in it. The polarization vector of the incident wave lies in the plane of incidence.



ICSV14 • 9–12 July 2007 • Cairns • Australia

-
y

6z

´
´

´
´

´
´

´
+́

x

-
Vi´

´
´

´
´

´
´

´
´

3́
~K

C
C
C
C
C
C
C
COK0

£
£

£
£

£
££°Ti

-¾
a

θ

α

P P P P P P P

φ

Figure 1. Diffraction by a cicular hole of radius a.

Fig. 1 shows an appropriate system of coordinates. The screen lies in the x-y plane with
the opening centered at the origin. The wave is incident from below, so that the domain z > 0 is
the region of diffraction fields. The plane of incidence is taken to be the x-z plane. The incident
wave’s stress field, written out explicitly in rectangular components, is

~Ti = ~T0(S1 cos α− S3 sin α)e−iK(z cos α+x sin α) (12)

where S = stiffness.
In calculating the diffraction field with (11) we will make the customary approximation

that the exact field in the surface integral may be replaced by the incident field. For the vector
relation (11), we need

(~n× ~Ti)z=0 = T0~s2 cos α eiK sin αx′ (13)

Then introducing plane polar coordinates for the integration over the opening, we have

~T (~x) =
ieiKrT0 cos α

2πr
( ~K × ~S2)

∫ a

0

ρdρ

∫ 2π

0

dβeikρ[sin α cos β−sin θ cos(α−β)] (14)

where θ, φ are the spherical angles of ~k. If we define the angular function,

ξ = (sin2 θ + sin2 α− 2 sin θ sin α cos φ)1/2

the angular integral can be transformed into

1

2π

∫ 2π

0

dβ′e−iKρξ cos β′ = J0(Kρξ)
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Then the radial integral (14) can be done directly. The resulting stress field is

~T (~x) =
ieiKr

r
a2T0 cos α( ~K × ~S2)

J1(Kaξ)

Kaξ
(15)

The time averaged diffracted power per unit solid angle is

dP

dΩ
= Pi cos α

(Ka)2

4π
(cos2 θ + cos2 φ sin2 θ)

∣∣∣∣
2J1(Kaξ)

Kaξ

∣∣∣∣
2

(16)

where

Pi =

(
T 2

0

2z0

)
πa2 cos α, (17)

is the total power normally incident on the aperture.
The power radiated per unit solid angle in the scalar Kirchhoff approximation is

dP

dΩ
= Pi

(Ka)2

4π
cos α

(
cos α + cos θ

2 cos α

)2 ∣∣∣∣
2J1(Kaξ)

Kaξ

∣∣∣∣
2

(18)

If we compare the vector result (16) with (18), we find similarities and differences. Both
formulae contain the same “diffraction" distribution factor |J1(Kaξ)/Kaξ|2 and the same de-
pendence on wave number. But the scalar result has no azimuthal dependence (apart from that
contained in ξ), whereas the vector expression does. The azimuthal variation comes from the
polarization properties of the field, and must be absent in a scalar approximation. For normal
incidence (α = 0) and Ka À 1, the polarization dependence is unimportant. The diffraction is
confined to a very small angles in the forwarded direction. Then all scalar and vector approxi-
mations reduce to the common expression

dP

dΩ
= Pi

(Ka)2

π

∣∣∣∣
J1(Ka sin θ)

Ka sin θ

∣∣∣∣
2

(19)

4. DERIVATION OF IMAGE FORMATION THEORY

Sofar the ultrasonic image formation is based on the Kirchhoff scalar diffraction theory. We use
the angular spectrum approach[2]. This method is different from Kirchhoff theory. It resembles
the theory of linear time-invariant filters. Here the complex field distribution across any plane
is Fourier analyzed, the various spatial Fourier components can be identified as plane waves
travelling in different directions. The field amplitude of any other point can be calculated by
adding the contributions of these plane waves, taking due account of the phase shifts they have
undergone in propagating to the point in question.

Let the complex field across that plane be represented by ~T (x, y, 0); our ultimate objective
is to calculate the consequent field ~T (x, y, z) that appears at a second point P0 with coordinate
(x, y, z).

Across the xy plane, the function ~T has a two-dimensional Fourier transform given by

~A0(fx, fy) =

∫∫ ∞

−∞
T (x, y, 0)exp [−j2π(fxx + fyy)] dxdy (20)
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The operation of a Fourier transformation may be regarded as a decomposition of a com-
plicated function into a collection of more simple complex-exponential functions. To emphasize
this point of view ~T can be written as an inverse transform of its spectrum

~T (x, y, 0) =

∫∫ ∞

−∞
A0(fx, fy)exp [j2π(fxx + fyy)] dfxdfy (21)

Considering that the equation for a unit-amplitude plane wave propagating with direction
cosines (α, β, γ) is simply

B(x, y, z) = exp

[
j
2π

λ
(αx + βy + γz)

]

where γ =
√

1− α2 − β2.
Thus across the plane z = 0, a complex-exponential function exp[j2π(fxx + fyy)] may

be regarded as a plane wave propagating with direction cosines

α = λfx β = λfy γ =
√

1− (λfx)2 − (λfy)2 (22)

The complex amplitude of that plane-wave component is simply A0(fx, fy)dfxdfy, evalu-
ated at (fx = α/λ, fy = β/λ). For this reason, the function

~A0

(
α

λ
,
β

λ

)
=

∫∫ ∞

−∞
~T (x, y, 0)exp

[
−j2π

(
α

λ
x +

β

λ
y

)]
dxdy (23)

is called the angular spectrum of the disturbance (23) ~T (x, y, 0).
Consider now the angular spectrum of the disturbance ~T across a plane parallel to the xy

plane but at a distance z from it. Let the function ~A(α/λ, β/λ, z) represent the angular spectrum
~T (x, y, z) that is,

~A

(
α

λ
,
β

λ
, z

)
=

∫∫ ∞

−∞
~T (x, y, z)exp

[
−j2π

(
α

λ
x +

β

λ
y

)]
dxdy (24)

Now if the relation between ~A0(α/λ, β/λ) and ~A(α/λ, β/λ, z) can be found, then the
effects of wave propagation on the angular spectrum of the disturbance will be clear.

To find the desired relation, note that ~T can be written as

~T (x, y, z) =

∫∫ ∞

−∞
~A

(
α

λ
,
β

λ
, z

)
exp

[
j2π

(
α

λ
x +

β

λ
y

)]
d
α

λ
d
β

λ
(25)

The ~T (~x) determined by vectorial approach is given by eqn. (15). We now extend ~T (x)

to ~T (x, y, z) to take account of the effect of propagation.
It is also to be noted that the vectorial approach is the proper approach for treating the

existence of evanescent waves in the angular spectrum. These wave components are strongly
attenuated by the propagation phenomenon and so are non-propagating.
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5. DISCUSSION ON THE EFFECT OF POLARIZATION ON ACOUSTICAL
IMAGING

The effect of polarization on acoustical imaging is seldom discussed. It is often ignored. We
have seen from Eqn. (16) the azimuthal variation due to the polarization properties of the acous-
tic field. For normal incidence, α = 0 and Ka À 1, the polarization dependence is unimportant,
the diffraction is confined to very small angles in the forward direction and all scalar and vector
approximations reduce to the same expression. For Ka = π, there is a considerable disagree-
ment between the vector and scalar approximations. It is to be noted that scalar approximation
only gives information on the diffracted acoustic field only in a particular component direction
if the rectangular coordinates is used.

6. CONCLUSION

So far we have followed the Kirchhoff vector approximation in our work. It would be very
useful to follow the exact calculations. There is reason to believe that the vector Kirchhoff
result is close to the exact theory, even through the approximation breaks down seriously for
Ka ≤ 1. The vector approximation and exact calculation[3] for a rectangular opening yield
results in good agreement even down to Ka ∼ 1.
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