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Abstract 
 
The research is focuses on the theoretical study of the stability in sense of Lyapunov for 
evolution of the dynamical systems that depend of parameters. Is proven an original theorem 
of separation between the stable and unstable zones, in the plane of chosen principal 
parameters. In the paper is related, using this results, an original method for identification, in 
the plane of principal parameters of the mathematical model of the dynamical system, the 
stabilities and instabilities regions of the dynamical system motion. We analyze also a lot of 
theorems, as the Floquet stability theorem, about the motion stability for the dynamical 
systems described by differential equation systems with periodical coefficients.  The results 
are applied to study the motion stability of the couple pantograph – contact wire of the 
electrical locomotive. The parameters of the system consist of two concentrated masses, the 
bending stiffness, the horizontal tension, the viscous damping and the mass per unit length of 
the wire, the other damping coefficients and stiffness elements of the system and any constant 
speed specified in the model. We study the stabilities and instabilities regions of the 
dynamical system motion using these parameters and our original method of identification of 
stability zones, in the plane of principal parameters of the mathematical model of the 
dynamical system pantograph-contact wire. 

1. INTRODUCTION 

Firstly we describe some results about the differential linear equations and systems. Consider 
a linear differential equation of order n  for the unknown function y : 
 
                                               ( ) ( -1)

1 1 0  ... 'n n
ny a y a y a y f−+ + + + =                                        (1)                         

 
where 1 1 0,...,  ,  ,  na a a f−  are functions defined on an interval J R⊂  with complex values, 

and initial conditions ( 1)
0 0 0 1 0 1( ) ,  '( ) ,..., ( )n

ny x y y x y y x y−
−= = = . 
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Using the notation ( ) ( 1)
1 2 1, ,...,  ',  ,n n

n nw y w y w y w y−
+ = = = =  the equation (1) can be 

written in a matrix form as 
 
                                                           '  W A W g= +                                                       (2) 

where: 
 

1

1

0 1 2 2 1

   0      1      0    ...     0        0
.....................................................

,  
   0      0      0     ...     0        1

     ...   
n

n n n

w

A W
w

a a a a a w
−

− −

  
 
 = =
 
 − − − − −    

0

0
2

1

0
......

,  ,  ,
0 n

n

y

g W
y

f y
−

−

  
   
   = =
   
   

     

          

 
and the initial conditions are expressed as 0 0( )W x W= .                                                   

We present without proof [4], the following theorem: 
 
Theorem 1 If in matrix equation (2) the functions 0 1,  ,  ...,  nf a a −  are continuous on the 

definition interval J R⊂ , then equation (2) has a unique solution  ( )W x , a column vector, so 
that  0 0( )W x W= . 

 
Are defined any n  linear independent solutions of the homogenous system '  W A W= as 

the fundamental system of solutions. With the linear independent vectors, placed one after the 
other, one forms a square matrix W  called the fundamental matrix of homogenous system 
which verifies the matrix equation W ' WA= . 

 
Theorem 2 If W  is any fundamental matrix of system '  W A W= , then any solution of 

this system  can be written as Ww c=  where c  is a constant vector; if the initial condition is 

0 0( )w x w=  then the solution is 1
0 0( ) W( )W ( )w x x x w−= . Any fundamental matrix of system 

can be deduced from another multiplying at right with a constant matrix. 
 
Theorem 3 If W  is any fundamental matrix of the system '  w A w= , and 0 0( )w x w= , 

then any solution of the inhomogeneous system  0'  ,    ,  ( )w A w g A g C J= + ∈ , is  

0

1 1
0 0( ) W( )W ( ) W( ) (W )( )

x

x
w x x x w x g t dt− −

∫= + .  

2.  MATRIX FUNCTIONS 

We present in the following paragraphs some details about the matrix functions. For the 
beginning we consider the polynomial function. If nA M∈ with proper values  1 2,  ,..., ,nλ λ λ  

then ,  k
nA M k N∈ ∈  and ( )p A  is: 

 
                                   1

1 1( ) ... ,  ,  1,...,m m
m m jp A A b A b A b b C j n−
−= + + + + ∈ =                      (3)  
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For a matrix which admits a diagonal form, that means that there is a matrix D  with 
non zero values only on its diagonal, and an invertible matrix S  with -1A SDS=  then 

1 1 ;  ( ) ( ) ,k kA S D S p A Sp D S− −= =  where:    
                         

                                                   
1( )     0     ...    0

( ) ..............................
0            0     ... ( ) n

p
p D

p

λ

λ

 
 =  
  

                                               (4)                        

 
We extend the matrix function definition for differentiable functions in a domain in C  

which contains the proper values of A . For a closed rectifiable curve γ  which includes inside 
a point ς , where g  is differentiable, but which does not include a singularity of g , is known 

that 11( ) ( ) ( )
2

g z g z dz
i γ

ς ς
π

−
∫= − . We define ( )g A  as 11( ) ( ) ( )

2
g A A zI g z dz

i γπ
−

∫= − , where 

γ  is a closed rectifiable curve which includes the spectrum of A , but does not include any 

singularity of g . For the exponential function ( ) ,xzg z e=  ,  x z C∈ , one defines ( ) xAg A e=   

as  11( ) ( )
2

xzg A A zI e dz
i γπ

−
∫= − , where γ  is a closed rectifiable curve which includes the 

proper values of A . We differentiate: 
 

                      1 1d 1 d 1( ) ( ( ) ) ( )
dx 2 dx 2

xA xz xz xAe A zI e dz A zI ze dz Ae
i iγ γπ π

− −
∫ ∫= − = − =              (5)  

           
because the last integral is the matrix function for ( ) xzg z ze= . We obtain that xAe  verifies the 

matrix equation W ' WA=  and for 0x =  we have 0 11 ( ) 1
2

Ae A zI dz I
i γπ

−
∫= − = , where I  is 

the unit matrix. 
The matrix  xAe  is a fundamental matrix for the differential system: '  ,W A W g= +                        

0,  ( )A g C J∈  and the general solution, with the initial conditions 0 0( )w x w= , is: 

0

0

( )
0( )  

xx x A xA tA

x
w x e w e e g dt− −

∫= + . 

3. DIFFERENTIAL EQUATIONS WITH PERIODICAL COEFFICIENTS 

Consider the linear homogenous differential system 0'  ,   ,  ( ),  nW A W A M A C J J R= ∈ ∈ ⊂ .                           
We suppose that there is p R+∈  so that ( ) ( )A x p A x+ = for any x J∈ . The system is 

periodic with the period p . We mention the following theorem (Floquet): 
 

Theorem 4 If the system '  W A W=  is periodic, with the period 0,p >  then any 

fundamental matrix W  of the system, can be expressed  as R
1W( ) W ( ) xx x e= , where 
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1W ( ) nx M∈  is a periodical matrix with the period p , and R nM∈  is a constant matrix 
1R ln(C)
p

= , with  constant matrix C   defined  by W( ) W( ) C, C nx p x M+ = ∈ .  

4. STABILITY THEORY ASPECTS 

Consider the differential system '  y A y= , nA M∈   with components defined and continuous 

on  I R⊂ . Consider also 0t I∈ and 0
ny R∈ . From theorem 1, the solution :  ny I R→ , 

exists, it is unique, so that 0 0( )y t y= . Another solution :  ny I R→  of the system with the 
initial condition 0 0( )y t y= , and 0 0y y≠ , is called a perturbed solution of system, reported to 

y . The solution :  ny I R→  is called Lyapunov stable if for any 0ε >  exists δ  so that, for 

0 0y y δ− <  then y y ε− <  for any 0t t> , where 1max{ ( ) ,y y t=  2 ( ) ,...,  ( )  ;ny t y t  

0  ;   }t t≥ .  If, supplementary, ( ) ( ) 0,  j jy t y t− → for any 1,2,..., ,  j n= and t →∞ , then the 
solution is called asymptotic stable. 
 

Theorem 5(Floquet) If the system '  W A W=  is periodic, with the period 0,p >  and 

W, any fundamental matrix of the system, expressed  as: R
1W( ) W ( ) xx x e= , where 

1W ( ) nx M∈  is a periodical matrix with the period p , and R nM∈  is a constant matrix,   
then,  if the proper values of R  have negative real part, the solution of the periodical system  
is asymptotically stable, and if at least a proper value of the matrix R  is strictly positive, the 
solution of the periodical system is unstable. If the proper values of the matrix R  have zero 
real part, then the solution of the periodical system is undecided ( stable, unstable or 
periodical). 
 

Theorem 6 If :  ny I R→  is a stable solution of the system '  y A y= , with matrix of 
continuous components, defined by parameters, for fixed parameters, there is a 
neighbourhood of fixed parameters where the solution y  is also stable. For an unstable 
solution of the system we can  formulate analogue property. 

 
Proof: We denote the set of parameters of the system by P and the solution of the 

system '  y A y= , for the known initial conditions, by ( , )y t P . We suppose that the 
solution ( , )y t P  is stable but there is not a neighbourhood of fixed parameters where the 
solution y  of the system is also stable. There is a sequence of parameters nP P→  for which  
the solution ( , )ny t P  is unstable  and for which ( ,  ) ( ,  )n ny t P y t P ε− > ,  where t  and ε  are 

specified values. Because ( ,  ) ( ,  )y t P y t P ε− <   for any 0t t>  and  0 0y y δ− < , from 
continuity of  solution y  with  nP P→ ,   is developed a contradiction that verify this theorem      
 

This theorem is used for separation of the stable and unstable zones in the plane of 
principal parameters by curves of periodical solutions of the system. 

Determining the domain of periodic solutions in the two chosen parameters plane, one 
determines the image of stability zone in this plane. 
 We use the following procedure to identify the boundary of the points with periodic 
solution from the two chosen parameters plane. The fixed domain for analysis, of the 
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parameters plane, is covered with a sufficient fine mesh and we study the evolution of the 
specified displacement solution in the mesh points. In the neighborhood of the periodic points 
of the parameters plane one can use a refined mesh. 

5. APPLICATION 

The dimensionless system of equations [6] that specifies the state form of the dynamical system 
described by pantograph and contact wire, is: 

 

             

L
2 2

3 s n 3 2 n 3 2 n 3 n 3s L L

2
2 3 n 2

j  1

(1 µ) y   2   ω  ( y  - y  )  ω  (  y  - y  )  ω   y    2   ω   y  0

sin j∆µ y   (1-µ) y   Ω  (  y  - [ Tj ( τ )   wj  ]  sin j τ  )  
j ∆

              

sς ς
∞

=

− + + + + =

+ + + +∑

L

L

2
n 3 n 3L L

2 4 2j j
j2 2 2β EI T

2
2 3 n 3 nL

                                       ω   y    2   ω   y   0                    

d T dT1. j j +    + (  ) T  =
v dτdτ v v

- 2 M (  µ y   (1-µ) y   ω   y    2   ω

ς

ς

+ + =

+

= + + + 3L  y ) sin j τ   ; j=1,...,5  

                 (6)                  

                                                                                        

with 
2

2 2 2 2
EI T2

m L m m π v  v ,   v  v  ,  v  v
T β LEI π

β= = =   , where T is the tension in the wire and β  is the 

viscous damping of the wire and where we consider the initial conditions for the problem: 
 

                                         3 o3 3 03 2 o2

2 02 i oi i oi

y  (0)  y  ,  y  (0)  y   , y  (0)  y  ,

y  (0)  y  ,T  (0)  T  ,  T  (0)  T

= = =

= = =
 

 

Now we consider the participation of the external forces by additional values in the coefficients 
of the series development of the contact force between pantograph and contact wire, in the right hand 
of the third equation from the system.  
 Are denoted by ,  jA j N∈   the additional term of the coefficient for sin jτ  that intervene in 
the third equation of the system (6). In the case of analysis we consider the following fixed values of 
parameters: 
 

4.77,      0.3,      0.58,      6.4,

0.1,       0.72,       0.45,      85.6
n s

nL L EI

M v

v
βς

µ ω ς

Ω = = = =

= = = =
 

 
The free dimensionless parameters in the plane of parameters are chosen, in this case,  λ  and 

Tv , where nL ns λ ω ω= . We analyse the stability of motion for mass uM  with the displacement 2y .  
In fig.1 is plotted with continuous line the domain of periodic solutions of 2y  in the two 

chosen parameters plane in the case 0jA =  for  j N∈  and with discontinuous line the domain 

of periodic solutions of 2y  in the case 1A 0.03=  and 0,   1jA j= ≠ .  
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Figure 1. Stable and unstable zones in the plane of parameters 

6. CONCLUSIONS 

The method of stability analysis, described by numerical method specified in this paper, has 
permitted to analyze the influence of external forces on the motion of the pantograph – contact 
wire dynamical system, modeled as two sprung superposed masses in contact with a wire.   
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