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ABSTRACT
A modified transfer matrix method is developed to obtain exact solution of natural
frequencies and mode shapes of a cantilever beam loaded with distributed mass over an
intermediate span. As verification, free vibration of a cantilever beam with concentrated
mass is studied as a limiting case and the computational natural frequencies agree very
well to the data available in the literature. Computational results are presented to
demonstrate influence of added mass position and length on vibrating behavior of the
mass-loaded cantilever beam.
As the mass position is fixed, the effect of mass length is found to be significant for
natural frequencies of higher modes, implying that in this case error will appear if a
distributed mass is modeled as a concentrated one. However, when the length of the
distributed mass is rather small, say 1/1000 of the beam length, then it can be regarded as
a concentrated one with good accuracy.

INTRODUCTION

Free vibration of non-uniform beams has been a
because of its relevance to aeronautical, mechanical

subject of numerous investigations
and structural engineering. A special

case of non-uniform beams is the beam loaded with mass. Such type of structure is
common in engineering.
Vibration of the beam with concentrated mass or masses has been extensively studied by
many authors using analytical or approximate approaches [1-7]. However, the loaded
mass is usually distributed in engineering practice. A literature survey shows very few of



works on this vibration problem. Chan and Zhang [8] has studied vibration of a cantilever
tube partially filled with liquid, which was modeled as a cantilever beam loaded with
uniformly distributed mass.
Chan and Zhang’s approach was conceptually a transfer matrix method. In present paper,
their approach is extended to obtain exact solutions for a cantilever beam loaded with a
partially distributed mass in an intermediate sparI. By shortening the span length, the
partially distributed mass is in effect a concentrated one. As verification, free vibration of
a cantilever beam with concentrated mass is studied using the developed approach, and
the computational natural frequencies agree very well to the data in the open literature.
Computational results are presented to show some features of natural frequencies and
mode shapes of the studied cantilever as function of the position of mass center. As the
position of mass center is fixed, the effect of mass length on the natural frequencies is
also demonstrated. It is found that such effect is significant for higher modes, implying
that error will appear if a distributed mass is still modeled as a concentrated one in this
case. Therefore, the present approach can be applied to a more general case of mass-
loaded beams with good accuracy.

THEORY DERIVATION

In figure 1 is shown a partially loaded cantilever beam with the coordinate system, the

origin located at the left end of the added mass span, which is ld from the left end of the

beam. The distributed mass has a length of la and its mass per unit length is ma. The

stiffness of the beam is H, length L and mass per unit length m, all constant along the
beam.
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Figure 1. Diagram of a beam loaded with an intermediate section of distributed mass.

According to the Euler-Bernoulli beam theory, the equation of motion for free vibration
of the mass-loaded beam can be written as,

EI~+{m+ma[H(x)-17(x-za)]}~= o (1)

where W is transverse displacement of the beam, H{) is the Heaviside step fiction.
Divide the loaded beam as three fields at the two junctions, x=O and X=la, each field
representing an uniform Euler beam, then the vibrating displacement in each field can be
expressed as,



W,(x, t) = (A, sin k,x + B, cosk,x + C, sinh kix + D, coshk,x) e’”’ (2)

where i is the number of field, i=l for –l~<x <O, i=2 for O<x<l~, andi=3 for

lo<x<L–ld.

The wave numbers in (2) should read,

k;=k; =~= k4, andk;=(m+;)a’ (3)

For later use it is convenient to define that,

k 1
Y=;, Y, ‘#+Y2)> Y, ‘;(h’), TI=; ; mduo=k,L u, =k,ld, u, = k21a, u, = k,la (4)

At the junctions, the state vectors can be written as,
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(5)

where j is the junction number, j=l for x=O and j=2 for ~la. q is the slope, A4 the

bending moment, and V the shear force. By Euler-Bernoulli beam theory, q = %.,

M = -H “w~,x , and V = El a3w73, . Then substitute (2) into the above variables, the state

vectors can be expressed as,

‘z’=[T’ll!lymdz’=’q+lE)

(6)

where z ~ and z} are the state vectors at the left and the right sides of junction j,

respectively.
Due to the continuity and equilibrium conditions at the junctions, one has,
L_ RZ,–z , , j=l,2

written in matrix form as,

where

[A] =

I
A2’

B,
and

C*

Q,
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I“Y2OI’Y1O
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(8)



[

sin U2 Cos 3+ sinh U2 Gosh U2

[T,]= Cos’+
– sin U2 Cosh 1+ sinh U2

– sin U2 – Cos 342 sinh U2 Gosh 3/2

I

9 IT31=

–Cos 342 sin 342 cosh U2 sinh U2

Then one obtains,

sin u3 CosUJ sinh U3 cosh U, ‘

q Cos u, – IIsin 343 IIcosh u, q sinh u, (9)

- qz sin u, – q2 COSU3 112sinh u, r12cosh u,

- / Cosu, q’ sin u, T13cosh U3 q’ sinh u,,

The cantilever beam has the boundary conditions at both ends, written as,

w@d,t)=w,’(-ld,t)=w3’’(L-ld,t)=w3’’’1 d,t)=o)=o
which yielding the following matrix equation,

[ K1

A,

B,

c,

b,
where

(lo)

(11)

(12)

‘1
– sin u, Cosu, – sinh u, cosh U,

[K,]= Cos% sinu, coshu, -sinhu
H

o 0 0

0 ‘,[K]= ~
1

(13)

o 0 0 3 -sin(u, -u,) -IXIS(:o - u,) sinh(~ -u,) cosh(~, -u,)
(0 o 0 0) (-cos(uO -u,) sin(uo -u,) cosh(uo -u,) sinh(uo - u,))

Substitute (1O) into (12) yields,

[1{k] w]-’ [~l+[Kd} ! ‘0
D;

This is a eigenvalue problem of free vibration of the partially
Exact natural frequencies can be calculated by finding the
frequency equation,

I[WA] [~2]’[L]+[ql=o

(14)

loaded cantilever beam.
roots of the following

(15)

The corresponding eigenfactors give the coefficients in (2) which describe the mode
shapes.

COMPUTATIONAL RESULTS

In figures 2a-2d are shown the frequency shifl curves for the first four modes as function
of the center position of the distributed mass. One can observe that as the distributed
mass shifts from the clamped end to the free one, the fundamental natural frequency
decreases while the natural frequencies of the other modes vary cyclically.
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Figure 2. Frequency shift due to position
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of mass center. The frequency is rated by
corresponding one of uniform beam. The ratio of added mass to the beam mass is 5.

, l&=o.0001;----, l&L=o.ool;----., l(#L=o.02;----“,44L=Q.Q5.
(a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4.

The nodal points of corresponding mode shapes for the fourth mode, shown in figure 3,
shift with the distributed mass in a ‘swing’ manner, and the amplitudes of mode shapes
are suppressed at the location of the mass.
From figures 2a-2d, it can also be seen that when the length of the distributed mass is
very small compared with the beam length, say no more than 0.00 IL, the frequency shift
curves are almost same, as
However, when the mass
significant changes.

shown in figure 2 for the curves of lJL=O.0001 and 0.001.
length increases Iirther, the frequency shill curves show
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Figure 3. Mode shapes for the fourth mode with the added mass located at different
positions. The ratio of added mass to the beam mass is 5.

When the length ratio of the distributed mass to the beam is very small, the mass can be
treated as a concentrated one with good accuracy. In figure 4 is shown computational
frequency shift curves, compared with the data reproduced from Goel [2]. The curves are

computational results using the present method, where the mass length, l., is 0.00 IL. The

parameters used in computation are same as those in [2]. One can observe that the
agreement is very good, and the validity of the developed method is therefore proved.
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Figure 4. Frequency shift as function of the ratio of added mass to beam mass,
compared with data given by Goel [2]. Curves are computational results using the
present approach, and symbols are data reproduced from Goel [2].
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Figure 5. Frequency shift due to mass length when its position is fixed ( J’#=0.9 ).
The frequency is normalized by that of the mass-loaded cantilever with l@=O.001.
The ratio of added mass to the beam mass is 5.

When the mass length is relatively large compared with the beam length, however, errors
will appear if a distributed mass is still modeled by a concentrated one, as already shown
in figures 2a-2d. To demonstrate such errors more clearly, computational fi-equency shift
curves are shown in figure 5, as function of mass length when the position of the mass
center is fixed. One can see that the error is sometimes significant, for example,
exceeding 5°/0 for the third mode and 10“/ofor the fourth mode with la /L=O.04, and even
up to 15°/0 for the fourth mode with la /L=O.05. Therefore, the present approach can be
applied to more general case of vibration of beam loaded with mass.

CONCLUSIONS
In this paper, the transfer matrix method is modified to calculate exact natural frequencies
and mode shapes of a cantilever beam with an intermediate section of distributed mass.
The developed method is verified by comparing with the results in the literature. Some
computational results are presented to show the effect of the mass position and length on
vibrating behavior. The results also show that errors may be up to 10- 15°/0if a distributed
mass is always modeled as a concentrated one.
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