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ABSTRACT

A wave-envelope element numerical scheme is presented for
wave problems. The formulation is characterised by the

steady and transient unbounded
use of conjugated weighting

functions which yield frequency-independent mass, stiffness and damping matrices for a
discrete frequency-domain model. This can be transformed directly into the time domain and
leads to transient equations for exterior nodal pressures which are local. Implicit and semi-
explicit methods are used to solve these equations. There are advantages to formulating the
proposed elements in spheroidal rather than conventional spherical polar coordinates.
Specifically, the size of the conventional finite element mesh which is required in the vicinity
of slender or flat radiating objects can be reduced without compromising the completeness of
the trial solution in the outer region. A mapped spheroidal formulation is proposed and
computed test solutions are presented. An indirect transient solver is also proposed for the
solution of the transient discrete equations. This does not require the storage of non-zero or
“fill” terms and reduces by a large factor the matrix storage and overall CPU requirements for
large three-dimensional transient problems.

1. INTRODUCTION.

The treatment of radiation boundary conditions at the “open” boundaries of unbounded
acoustical problems presents a major challenge for computation. The use of discrete node-
based or grid-based schemes requires a suitable anechoic termination at the edge of a finite
computational region. The more compact and manageable the inner region, the more
demanding the numerical treatment that is required on its boundary. This difficulty is
circumvented by a variety of Boundary Element (BE) techniques which represent the exterior
solution as a surface distribution of source terms. BE schemes are intrinsically non-local in
space and result in fully populated coefficient matrices, negating to some extent the
economies implicit in using a surface rather than a volume discretisation.



The perception that the BE approach is the most effective numerical option for the
computation of unbounded problems has been challenged in recent years by an expanding
repertoire of domain-based methods. These generally involve finite element (FE)
discretisations in an inner region coupled to local or non-local anechoic treatments at a finite
boundary. They have higher algebraic dimensionality than comparable BE models but
generate more sparsely connected systems of equations. “Infinite elements” have also been
applied to such problems (Bettess 1992). The interpolation functions within such elements
contain outwardly propagating wave-like factors. Early formulations of this type did not
correctly model asymptotic behaviour but subsequent “mapped” formulations are
asymptotically correct in the far field. More recently, spheroidal coordinate systems have been
used to formulate infinite elements. This permits - in theory at least - a more compact inner
discretisation (Burnett 1994). With the exception of the formulation of Olson and Bathe
(1987) which is strictly valid only in the limits of high and low frequency, infinite elements
have been formulated exclusively in the frequency domain.

Wave envelope elements (Astley 1983, Astley and Eversman 1988) and more recent] y
mapped wave envelope elements (Bettess 1987, Astley et al 1994) employ interpolation
functions similar to those of regular infinite elements but use conjugated weighting functions.
Although developed primarily for use in the frequency domain, wave envelope elements can
readily be applied to the analysis of transient problems (Astley 1996).

In the remainder of this article, a wave-envelope element numerical scheme is presented
- for the solution of axisymmetric problems. . Spheroidal element geometries are used. The

fori-nulation is based on a Fourier transformation of a discrete wave envelope model
formulated in the frequency domain, The resulting transient equations are local in space and
time. The accuracy of the scheme is demonstrated by a comparison of computed and analytic
solutions for axisymmetric test cases.

2. THE EXTERIOR ACOUSTIC PROBLEM

The geometry of the problem is shown in figure 1(a). A solution is sought for the exterior
sound field generated by the motion of a closed surface S at rest at time t=(l. The exterior
region R is divided into a finite jnner region Ri and an unbounded ~uter region R,, separated

by an interface ~ (see figure 1(a)). The acoustic pressure p(x, t) is initially zero at all points.
For t >0, p(x,t) is governed by

(1)

and Vp.n = - po a., on S (2)

where n is a unit vector normal to S, p. and c are the mean fluid density and sound speed, and
a~(x, t) is the normal acceleration of S. At large distances from S, the solution satisfies the
Sommerfeld radiation condition;

r{i3p/i3 r+ (1/c)dp/d t} + O, as r +-, (3)

where r is a spherical radial coordinate. This is satisfied by the transient initial value solution
but must be imposed as a necessary condition for the time-harmonic problem. The transient

acoustic pressure p(x, t) and its complex Fourier transfom, ~ (T ~) are related by the transform

pair
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Figure 1(a). Problem geometry.
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Equations (l)-(3) then transform to

v’~+kz~=o in R,

V~.n=- p.~~ onS,
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Figure l(b). Topology of an
oblate spheroidal element.
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where k =Wc and ii. (~ O) is the complex Fourier transform of a~(x,t),Alternatively equations

(5)-(8) define the steady harmonic problem where ~ (Tco) is the complex pressure amplitude.

3. THE WAVE ENVELOPE FORMULATION.

The wave envelope (WE) formulation is based on a discrete representation of the acousic
pressure amplitude of the form

P(X, a))= ~ ~j ((f)) (pj (x, (D), (8)
,=1

where ~j(~ a) (j= 1,..n) are known basis functions and ~j (o) (j=l,. .n) are unknown coefficients.

Equation (9) is valid over the entire exterior region R. Application of a Galerkin procedure with

weighting functions Wj(x,o) (’=1,2..n) then yields a system of linear equations;

where ~ is the vector whose components are the trial coefficients qi(~) (i= 1,..n) , A is an nxn

coefficient matrix and f an nxl forcing vector. A and ~ have components;



4j=j{vF-vVj - ‘2 YVj]dR, and fi=JPa Vznds - (lOa,b)
R s

The weight and basis functions Wiand ~ are chosen so that the above integrals are finite. They

are defined as follows:

(a) In the inner region Ri , a regular FE model is used. i.e

Wj(x,CO)=@X) = Nj(x), (11)

where Nj(x)) is the global finite element shape function associated with node j (see figure 1(a)).

The corresponding coefficients ~j (w) are nodal values of the pressure amplitude ~ (x, CO).

[b) In the outer re~ion, RQ1the basis functions ql(~ @ corresponding to node 1say (see figure
l(a)) are given by

PZ(%@) = Pl(x)e–z ‘P (x) (12)

where k is the scalar wave number (=aYc) and where the phase function p.(x) is chosen so that

VjJ is aligned with the (estimated) direction of wave propagation. In the case of an

axisymmetric spheroidally formulated element, Vp lies along a local radial direction in a prolate
or oblate spheroidal coordinate system. The orientation of an oblate spheroidal element with

respect to spheroidal coordinates p and Q!is indicated in figure 1(b). The interpolation function

Pi(x) then defines an “envelope” of waves of vector wavenumber kVp . In the case of a

spheroidal element the dependence of Pi(x) on a spheroidal radius p is a polynomial in (l/p) of
order rn+l where m is the number of nodes along the infinite side of the element. The phase

function p(x) is proportional to p . A mapping is used to define these functions (Astley 1997).
The weighting functions within the element are then defined as

+ i kp (x)
Wl(q o) = D(x) [q 1(%co)]* = D(x) P1(x) e , (13)

where [ ]* denotes a complex conjugate and D(x) is a geometric factor which behaves as (1/p2)
and takes the value of unity at the interface between the wave envelope region and the FE mesh.
The presence of the conjugate term in the weighting functions greatly simplifies the integrals of
equations (10) and permits a simple transformation to the time domain.

Upon substitution of expressions (11-13) into integral (lOa) , it is not difficult to show that

the coefficient matrix A(o) can be written in terms of frequency-independent sub-matrices K,
C, and M. Equation (9) then becomes

[K+ioW-co2M]ij =~, (14)

which can be transformed directly into the time domain to give

Kq+Cq + Mq = f(t), (15)

where qi(t) = $-’ {~(m)} , and J(t)= $-’ {~(~)} . The components j(t) can

moreover be assembled directly in the time domain, being given by

P

.fi = I pNia.(x,~)ds.
J
s

The components of the transient
instantaneous nodal values of

(16)

solution vector q(t) within the inner region correspond to
acoustic pressure. In the WE region, they represent



instantaneous nodal pressures at a delayed time equal to the time required for a disturbance to
propagate from the edge of the inner mesh (Astley 1996).

4. SOLUTION IN THE FREQUENCY DOMAIN.

A complex L-U solver is used to solve equation (14). A “skyline” storage algorithm takes
advantage of the sparse structure within the coefficient matrix In calculating a frequency
response over a range of frequencies, the stiffness, mass and damping matrices, K, ~ and M
are assembled once only.

5. DIRECT SOLUTION OF THE TRANSIENT EQUATIONS.

In the transient case, a direct time-integration scheme is used to solve equation (15). In the
absence of any clear strategy for lumping the mass and damping matrices - which would make

an explicit scheme attractive - the implicit “average acceleration” (Newmark: ~ = lA, y = %)
method is used. The algorithm at each time step is given by;

where the subscripts “t” and “t+&“ denote values of q at successive time steps. The matrices
E, G, H and J are given by

E= K+(2/t!t)C+(4/~2)~ G=(2/&)C+(4/&2)~ H= C+(4/&)~ and J=M. (17d)

An L-U solver is used, the decomposition being performed once only at the first time step.
This scheme is known to be unconditionally stable for symmetric problems but there is no
assurance that this is the case in the current instance given that K and C are not symmetric.
Stable solutions have been obtained however in all of the test solutions to date.

6. ITERATIVE SOLUTION OF THE TRANSIENT EQUATIONS<

The calculation and storage of “fill terms”, generated during the decomposition of E, forms a
a significant computational overhead in the implicit scheme. This can be avoided by splitting
the diagonal and non-diagonal terms of E and solving equation (17a) iteratively. Equation
(17a) is replaced by

where q~+& denotes the value of the solution vector at time t+& after n iterations have been

performed. Here D, L, and U are diagonal, lower and upper matrices where; E = D + L + U.
Convergence is assumed when

where &is a prescribed value. Convergence will be shown to be rapid provided that the time
step is sufficiently small.
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Figure 2. Test case, FE/WE mesh

2.0

$

.Z
~ 1.5

6
~

?? ‘“0
g

0.5

0.0

0 5 10 15

wavenumber kD

Figure 3. Test case, steady response,

7. RESULTS.

The performance of the method is demonstrated by the presentation of computed results for
the sound field generated by a cylindrical piston in a plane baffle. Computed solutions are
obtained for the FWWE mesh shown in figure 2. The WE elements are based on an oblate
spheroidal formulation. The problem is axially symmetric about the line ABC. In the steady

case the piston undergoes time harmonic excitation, a(t) = a~eiw. In the unsteady case, it

experiences a single pulse: a(t) = O, t <0, a(t) = ao sincot, O c t cn7c0, and a(t) = O, t

>tico.

7.1 Steady solutions, the effect of element order.
The effect of element order on the accuracy of the computed solution is demonstrated in

figure 3 which shows a comparison of computed and analytic frequency responses at the
points A, B and C. These results are obtained by solving equation (14). The non-dimensional

acoustic pressure amplitude I F w’p~ao I is plotted against non-dimensional wavenumber kD

where D is the diameter of the piston. Results are presented for WE elements of radial orders
2 and 3. At the upper end of the frequency range - ie at kD = 15.0- the spatial resolution of
the inner FE mesh is marginal in terms of its ability to represent a wave-like solution. Some
deterioration in accuracy is therefore anticipated as frequency increases. In the current
instance however accuracy is clesarly limited by the radial order f the WE mesh ratehr than by
resolution of the conventional inner region. The same effect is apparent in other test cases for
which solutions have been computed using both prolate and oblate spheroidal elements. In
some respects this acts to limit the effectiveness of the spheroidal formulation in decreasing
the extent of the FE region in that the reduction in the number of nodes within the FE region is
generally offset by an increase in radial resolution in outer region to maintain accuracy.

7.2 Transient solutions, the efhect of step size.
Exact and computed transient solutions for the impulsively excited piston are shown in figures
4(a) and (b). Pressure histories are plotted against dimensionless time T (=tc/D) at points A
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Figure 4(a) Transient response at A: Figure 4(b) Transient respnse at B.

and B . The piston acceleration takes the form of a single half-wave pulse of duration 0.5 units
of dimensionless time. WE elements of order 3 are used. Results are shown for time steps:

6T=.025, 6T=.05 ‘and dT=.10. The smallest of these (&i”=.025) is equal to the time which
elapses as a disturbance propagates between adjacent nodes on the face of the piston. All

solutions are stable but those obtained by using the largest time step (&=.10) are marginal in
terms of accuracy. This is to be anticipated given that this corresponds to approximately one
fifth of the duration of the pulse. These results do not constitute proof that the average
acceleration scheme is unconditionally stable when applied to other problems but do lend
weight to this supposition.

.7.3 The performance of the iterative solver.
The performance of the iterative scheme is illustrated in figures 5(a) and (b), The data
presented in these figures are obtained by applying the iterative scheme of equation (18) to the
solution of the transient test problem. The pressure histories re-computed in this way are

indistinguishable to the scale shown from those shown in figure provided that s C10-3. The
rate of convergence of the iterative scheme is illustrated in figure 5 for various settings. In all
cases, the iterative solver runs for 100 time steps and an iteration count is performed at each
step. The results are presented in bar-chart format as the percentage of solution steps for
which convergence was achieved after a given number of iterations. The effect of varying the

parameter & is shown in figure (a), that of varying the step size is shown in figure (b). The

results of figure (5a) are obtained by fixing the time step at 6T=.025 and varying s in the

range 10-3 -10-6. As &decreases the convergence criterion becomes more stringent and more
iterations are required. The numbers are modest however, with 5-10 iterations generally
giving solutions which are indistinguishable for all practical purposes from those obtained
from the implicit scheme.

The effect of step size is illustrated in figure 5(b). Here the convergence parameter E is

fixed at 10-3 and the step size is varied from 0.025 to 0.10. The deterioration of the rate of
convergence as the time step increases is to be anticipated given that the number of the

surrounding nodes which participate in the solution increases once 8T exceeds the time taken

for a disturbance to traverse one element (in this case 6T=.025).
Further results - not presented here - indicate that model size does not significantly afect

the convergence of the scheme
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Figure 5(a). Convergence of the iterative

scheme, the effect of the parameter E

8. CONCLUSIONS.

comb m-mm bm
.rr. r

rnrrberd itersticn.sto cmwgsmm

Figure 5(b). Convergence of the iterative
scheme, the effect of step size.

An implicit time integration scheme has been implemented with a transient wave envelope
formulation and has been shown to give accurate and (apparently) stable solutions

The selection of step size is governed by considerations of accuracy in resolving the
temporal variation rather than by time-scales associated with the mesh.

An iterative scheme which does not require a matrix inversion has been demonstrated and
has been shown to converge rapidly provided that the time step is smaller than a
characteristic time-scale associated with the mesh.
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