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ABSTRACT

Aerospace structures can be subjected to severe acoustic excitations which exhibit random
characteristics. The handling of such random excitations in a numerical model is the subject of
this paper. Starting from the assimilation of the excitation to a stationary random process, it is
shown how to characterize acoustical excitations (and, more specifically, diffuse fields) and
how to evaluate efllciently the random structural response. This evaluation is performed with
an hybrid FEM/BEM model which takes into account elasto-acoustic effects. Algorithmic
issues related to the decomposition of the diffuse excitation into a set of uncorrelated pseudo-
load cases are addressed. Convergence properties of the proposed scheme are illustrated
through numerical applications.

1. INTRODUCTION

Space vehicles are subjected to a severe fluctuating external-pressure loading when their
rocket-propulsion systems are operated in the atmosphere and this loading may be critical for
some vehicle components and their supporting structures. On the other hand, acoustic loading
tests are usually carried out in reverberant chambers where diffuse field conditions are

achieved. Such acoustic excitations can be assimilated to random processes [1,2] and are
usually described in terms of overall sound pressure level (and its related frequency spectrum)
and appropriate spatial correlation functions.

The evaluation of the random response of exposed mechanical structures must refer to the
characteristics of the load (e.g. frequency content) but also to the structural properties
(stiffness, mass and damping). These properties are assumed to be strictly deterministic in the
present study.



In many practical cases, studied mechanical structures (usually lightweight) can interact
with the surrounding acoustic medium in a way such that the dynamic response is perturbed.
The handling of related kinematical and mechanical coupling effects requires the selection of
appropriate numerical models. The unbounded character of the fluid domain calls also for the
use of a boundary integral formulation which is able to handle exactly the Sommerfeld
radiation condition at infinite distance.

The coupled model used in the present development is based on the selection of a

displacement-based FEM model for the structure while a BEM model is selected for the
acoustic fluid. The BEM model relies on an advanced indirect boundary integral representation

[4] particularly well suited for thin structures (thickness is assumed to be small versus the
acoustic wavelength).

The paper is organized as follows. The frost section is devoted to the characterization of
random excitations as stationary random processes. A special attention is devoted to diffuse
fields. The second section is related to the coupled discrete model used for setting up the FRF
matrix. The third section shows how to proceed for getting the random response of the
coupled system. Numerical examples related to plate structures are presented in the last
section.

2. RANDOM ACOUSTIC EXCITATIONS

Acoustical excitations can be induced by discrete sources with random amplitudes. The
particular case of a diffuse acoustic field (as produced in a reverberant room) deserves some
attention. A diffuse field is defined as an acoustic field in which the time average of the mean
square sound pressure is the same at any location and the flow of acoustic energy in all
directions is equally probable. Such a diffhse field is usually obtained experimentally by
activating acoustic sources in a reverberant chamber (Figure 1). The multiple reflections along
the rigid boundary walls lead to the so-called ‘diffuse’ state.

At a modeling point of view, a difise field could be reproduced by activating a large
number of discrete sources. Tuning these sources for achieving a ‘diffuse’ field could be
impractical in many cases so that an alternative procedure based on an asymptotic
approximation can be preferred. Such an approximation can be obtained from the analytical

investigation of an infinite number of plane waves with random amplitudes and phases[5].

Whatever the key characteristic of the random excitation is, his random nature could be
defined in the same way. Let us denote by x, such an excitation. The random character of

x,(t) can be described by referring to a weakly stationary random process. The key

characteristics of any weakly stationary process x,(t) are the mean (which is constant and

usually zero in the present context), the auto-correlation function R,, (~) and the power

spectral density (PSD) function S~,(co) as given by:

RX,(z) = E[x, (t)x, (t + ~)]

where E[...] denotes the mathematical

+=-

Sx, (co)=*~RX, (~)e-iwd~
—m

expectation operator.

(1)



When a system is subjected to different random excitations, cross-correlation and cross-

PSD functions R .,X,(~) and Sx,x,(o) have to be introduced in order to characterize the

interdependency between load components.

The formal way for getting a diffuse field (superimposing an infinite number of plane waves
with different propagation directions) can also be followed in order to set up the cross-PSD
function for the acoustic pressure or the pressure gradient at two different locations within the
chamber (Figure 1). The whole procedure relies on the analytical expression of the steady-state
acoustic pressure induced by a plane wave at two points labeled 1 and 2:

p, = p(~, ,t) = P(m) exp(- ii ~F,)exp(i61t) p, = p(~, ,t) = P(m) exp(- ii. F’)exp(icot) (2)

where ~ and i2 give the location of the two considered points, k is the wave vector and cois

the circular frequency.
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Figure 1: Reverberant chamber.

The cross-PSD function for the pressure normal gradients gl and g2 at two arbitrary
locations within the room can be obtained by summing up the effects of an infinite number of
plane waves with random amplitudes and phases. The result turns out to be:

(3)

(4)

As indicated by expression (3), the diffuse acoustic field is simply characterized by the data
related to the reference point (S ~, ) and the spatial correlation function f ~ which depends only

on the frequency and the relative positions/orientations of considered points. It should be
emphasized that the derivation of the correlation function related to pressure gradients is
motivated by the selection of an elasto-acoustic model (section 3) where the acoustic
excitation is defined in terms of incident pressure normal gradients along the exposed structure.

Function (4) is an extension of the well known correlation fimction for pressures

( sin(kd)/kd where d = 7“- 7Z ). The spatial correlation function (4) is available in a closed

analytical form from which previously derived particular cases can be retrieved [5].

Additionally the correlation function has been verified experimentally [10] and some related
results can be found in section 5 of the present paper.



3. COUPLED FEM-BEM MODEL

The evaluation of the response of a mechanical elastic structure interacting with a
surrounding acoustic fluid can be obtained in many different ways. In the present study, a
displacement-based finite element model is selected for the structure while an acoustic
boundary element model is used for the acoustic fluid. This choice is quite natural for handling
the low frequency response of a conventional structure.

The boundary integral representation which sustains the development of the BEM model
presents several advantages (the radiation boundary condition at infinity is automatically
satisfied while the mesh requirements are reduced since only the boundary (i.e. radiating)

surface has to be discretized. Several boundary integral representations [6] are available in
order to describe the acoustic field around a vibrating structure. The selected formulation is
based on an indirect representation in terms of single and double layer potential densities along

the mean boundary surface [7]. This leads to the following integral representation for the
pressure at a point P outside from the boundary surface S:

{

dG(P, Q)

}
P(P) = P, (P) +J P(Q) an -4Q)G(P, d ds(d

s Q

(5)

where p, is the incident pressure, a and p are the single and double layer potentials, G is the

Green’s function and Q is a generic point along S.

This integral representation relies on the preliminary determination of layer potentials along
the boundary surface S. This requires in turn to set up appropriate boundary conditions. In this
context, a generalized approach [4] has been selected such that either pressure, normal velocity
or normal admittance can be independently constrained along both sides of the boundary
surface. Additionally transfer admittance boundary conditions and coupling effects with a
mechanical structure can be accounted for.

The discrete coupled model relies on a structural FEM model for the structure while a
variational solution scheme [8] supports the implementation of the above indirect boundary
integral representation. The discrete coupled system appears as

(6)

where Zs is the structural impedance matrix, Z F is the fluid impedance matrix, C is the

geometrical coupling matrix, xs is the structural load vector, x F is the fluid load vector, ys is

the structural response vector (nodal displacements or modal participation factors) and yF is

fluid response vector (single and double layer nodal potentials). Subscripts c and u denote
respectively coupled and uncoupled fluid degrees of freedom.

This formulation assumes implicitly that coupling effects occur only on one part of the
boundary surface. The other part (which could be reduced to zero) involves purely acoustic
boundary conditions. In a compact form, (6) could be rewritten as

Z(co)y=xor y= H(co)x (7)



where Z is the global impedance matrix of the coupled system, H is the global admittance
matrix of the coupled system (also called the FRF matrix), x is the load vector and y is the
response vector.

4. EVALUATION OF THE COUPLED RESPONSE

It can be shown [1,2] that the relation between the response PSD matrix SY and the excitation

PSD matrix SX is given by:

SY(m)=H(-o))&(co).HT (0) (8)

The practical evaluation of the random response is easier if one assumes that the load vector
can be expressed as a combination of ’1’deterministic load patterns (or load cases):

x(t) = L. f(t) (9)

where L ● R“X1and f c R’.

Components off are assimilated to stationary random processes characterized by a correlation
matrix Rf (and its Fourier transform Sf which is the related PSD matrix):

R f (z) = E[f(t) ~f ‘(t + ~)] (lo)

In such circumstances, the PSD matrix S ~ of the output can be obtained from:

SY(0)=H(-~)LoSf (~)LT.H’(m)

Defining by xl and x: the matrices of responses related to all load patterns:

xl= H(@L, x;= H(–co)”L

(11)

(12)

the power spectral density matrix S~can be evaluated from

sy(ci))=x;3f((f))$x,T (13)

The computational effort required is substantially reduced because the key operation is the
evaluation (at each discrete frequency) of the responses associated to the different load
patterns. This procedure is usually followed for handling mechanical excitations.

If the excitation is a diffuse acoustic field, the coupled model is ‘driven’ by the incident
pressure normal gradient acting along the boundary surface since the acoustic BEM model
relies on the normal derivative form of (5) expressed along the mean boundary surface. In the
discrete context, this means that each coefficient of the cross-PSD matrix of the excitation is
given by an expression like (3). A direct treatment based on (8) is not efficient and better
performances could be obtained if matrix S, can be replaced by a truncated decomposition

based on the extraction of the dominant eigenmodes of SX:

Sx((i)) = L~(co). T~(@ L~(m)T (14)

where S, = C“xn, L~ ● C“xm and T~ ~ Cmxmwith m<n.

Substitution of ( 14) into (8) leads to:

S,(m) = H(-m). L~(co). Tm(@ L&o)T . HT(co) (15)



The practical evaluation of ( 15) could rely on the process described by (12) and (13) due to
the strong analogy between (11 ) and (15). This analogy leads to interpret the columns of L~
as ‘pseudo-load’ cases. It should be noted that these pseudo-load cases are uncorrelated if
matrix T~ is diagonal. The effectiveness of the proposed procedure relies on the availability of
low cost, truncated decompositions (SVD or SSD methods).

5. NUMERICAL EXAMPLES

5.1 Verification of the approximate decomposition procedure

A rectangular plate (a=O.5 m, b=O.25 m, thickness=O.00144 m) simply supported along its
edges is excited by an acoustic diffuse field. The constitutive material has the following
mechanical properties: Young modulus = 1x1011 N/mz, Poisson ratio = 0.3, mass density =
1800 kg/m3). The excitation is defined as a white noise (PSD of the acoustic pressure is 1
Pa*/Hz). The structure is discretized into 320 QUAD4 elements and a modal representation is
selected (21 modes in the frequency range O-1500 Hz). A viscous damping ratio of 1YO is
assumed for all the modes. The response is evaluated in the frequency range 50-500 Hz with a
frequency step of 5 Hz (1Hz around resonance frequencies).
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Figure 2: Locations of nodal positions along sides OA/OB
for sampling the approximate correlation function.

The approximation of the spatial correlation function versus point O (at 500 Hz) along the
two sides OA and OB (Figure 2) using a variable number (5, 10 and 15) of pseudo-load cases
is shown in Figures 3(a) and 3(b) together with the exact form of the correlation function.

As it can be seen from inspection of these figures, a very good approximation can be
obtained with only a few vectors. The present calculation has been done using 15 vectors.
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Figure 3(a): Comparison of exact and approximate Figure 3(b): Comparison of exact and approximate
correlation functions along side OA (at 500 Hz) correlation functions along side OB (at 500 Hz)

using 5,10 and 15 pseudo-load cases. using 5,10 and 15 pseudo-load cases.



Figure 4 shows the PSD of normal acceleration at location (x=O.1 m, y=0.0625 m) as

computed by SYSNOISE [9] and compared to available reference results obtained by
activating 63 plane wave sources around the plane in order to create ‘art~lcially’ the diffuse
field. An excellent am-cement can be observed between the two models.
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Figure 4: PSD of acceleration at (x=O. 1 m, y=O.0625 m)
(line: plane wave model model, crosses: present approach)

5;2 Experimental validation

An experimental study [10] has been carried out in order to verify the correlation function
for pressure gradients and the capability of the procedure to capture effectively the random
response of a plate. This plate (a=O.6 m, b=O.4 m, thickness=O.001 m) is suspended vertically
(free-free condition) and is excited by an acoustic diffuse field (Figure 5). The constitutive
material has the following mechanical properties: Young modulus = 7x1011 N/m*, Poisson ratio
= 0.33, mass density = 2700 kg/m3). The excitation is defined as a white noise. The structure is
discretized into 1536 QUAD4 elements and a modal representation is selected (126 modes in
the frequency range O-1300 Hz). The response is evaluated in the frequency range 150-400 Hz
with a frequency step of 5 Hz ( 1Hz around resonance frequencies).
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Figure 5: Elastic plate in a diffuse field Figure 6: Comparison of measured and
(experimental case). computed coherence function for two parallel

velocity components 0.10 m apart (from [1O]).

The measured coherence function related to velocity components along z for two points
0.1 m apart is compared to the analytical expression based on (4) at Figure 6.



The measured and predicted acceleration PSD at point P2 (x=O.3 m, y=O.3 m) are compared
in Figure 7. Maximum 30 pseudo-load cases are involved in the numerical evaluation. As it can
be observed fi-om these figures, a good agreement has been obtained between numerical
predictions and measurements.

Figure 7: Comparison of predicted and computed PSD of acceleration
at point P, (x=O.3 m, y=O.3 m) (from [101)

6. CONCLUSIONS

The numerical treatment of a coupled elastic structure subjected to random acoustic
excitations has been described. The assimilation to stationary random processes provides the
required framework for handling the random nature of the excitation. The diffuse acoustic field
deserves some attention. An appropriate analytical model and an approximate decomposition
procedure into a set of correlated or uncorrelated pseudo-load cases allows to extract
efficiently reliable response results. Numerical examples related to a plate in a diffuse field
illustrate the computational procedure.
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