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Abstract: The reliability of a real time unsteady pressure measurement system is of
great interest in many domains of industry and research. Experimental constraints often
implies the presence of a pneumatic line between the pressure tap and the transducer, which
causes an amplitude and a phase distortion of the pressure signal to be measured. Different
ways for correction of this resonance phenomenon are proposed in the literature : analogical
(active filters), numerical (inverse transfer function), or mechanical (reduction of the tube
section on a certain length (restrictor)). We studied this last mechanical correction method that
is generally empirically used , without any a priori suitable choice of the position or the
- geometry of the restrictor.

This paper presents a modelization of the transfer function of the pneumatic line: the
analytical study displays the respective influences of the different geometrical elements of the
pneumatic line. Nevertheless, the complexity of the transfer function doesn't allow the a priori
determination of the best geometry of the pneumatic line. Our study provides a methodology
to optimize the geometry of the restrictor, using a non-dissipative model of the flow in the
tube, associated with a quasi-steady flow assumption in the restrictor.

I. INTRODUCTION

In unsteady aeroacoustics, it is necessary to measure surface pressure fluctuations on models:
the physical size of models may prohibit the mounting of pressure transducers internally,
closed to the measurement point. The pressure tap is relied to the transducer by a pneumatic
line, which resonance phenomenon requires a correction of the measurement system.

The use of an analogical compensation system made up of active filters allows, from
successive approaches, to reproduce the transfer function of the pneumatic line, with a
satisfying damping of the amplitude, but a phase difference which may be a non linear
function of frequency. Otherwise, a numerical method using the sampling of the measured
pressure and based on the calculation of the Inverse Transfer Function (I. T. F. method),



provides a good correction of the amplitude and of the phase distortion, but presents the
disadvantage of delayed computations.

Mechanical methods consisting in correcting the geometry of the pneumatic line have
been developed. The more frequently used consists in reducing the line tube section on a
certain length (restrictor) between the pressure tap and the transducer. The number of
geometrical parameters is important (volume before the transducer, diaphragm flexibility,
length and diameter of the tube, geometry of the restrictor (length, diameter) and position of
this one along the tube). Theoretical results have been obtained by Bergh & Tijdeman [BT65]
from the complete movement equations, for a series connection of N tubes and N volumes.
These results have been applied by the authors, and more recently by Holmes & Lewis
[HL87], to different systems, composed of a line tube with or without instrumentation
volume, and with one or two restrictors inserted along the tube. By comparing the transfer
functions obtained for different configurations, Holmes & Lewis tried to achieve systems of
optimum geometry, that is geometry leading to a modulus of the transfer function equal to
unity on the largest possible frequency band and a phase difference which is a linear function
of frequency. However, the complexity of the analytical expression of the pneumatic line
transfer function, prevents any a priori optimization of its geometry.

II. DETERMINATION OF AN OPTIMUM GEOMETRY USING A SIMPLIFIED
THEORETICAL PROPAGATION MODEL

Our purpose is to study a mechanical correction of the pneumatic line of an unsteady
pressures measurement system, using a restrictor. The complete theoretical model shows the
influence of the geometrical parameters of the pneumatic line, by using different values of
these ones . The transfer function being too much complex to allow an a priori choice of the
geometry, suitable physical assumptions are proposed and lead to a simplified model, which
provides an a priori approximate choice of the right geometry to use.

In the first two paragraphs, the theoretical complete model for a simple tube is
resumed and the influence of the length and radius tube and of a volume is discussed. The
complete and simplified model for a tube with a restrictor are presented in the third paragraph.

ILL Dissipative propagation in a simple tube

The basic equations for the propagation of sound waves in air in cylindrical tubes are the
Navier-Stokes equations in axial and radial directions, the equation of continuity, the equation
of state for an ideal gas and the energy equation. Introducing simplifying assumptions,
Tijdeman [Tij75] shows that these equations are governed by four parameters:

s =Ru\p,0/p the Stokes number, ratio of tube radius R, and boundary-layer thicknessd
k, = o R/c the reduced frequency, ratio of tube radius R; and A/2n ( A: wavelength)
o= m the square root of the Prandtl number: o =\/PT (Ap: thermal conductivity)
y=G/C, the ratio of specific heats.

with ® =2 = f, fbeing the frequency, c the velocity of sound and pg the mean density of fluid.

The complex propagation constant I', which appears in the solution of the problem,
consists of a real part [’ and an imaginary part I'”, representing respectively the attenuation
and the phase shift over a unit distance in the axial direction. The expression (1), established
by Zwikker & Kosten [ZK49] and independently obtained by Iberall [Ibe50], called "low



reduced frequency solution" has been shown by Tijdeman to be valid over the complete range
of the values of s for k, << 1 and £,/s << 1, from Rayleigh's solution to Kirchhoff’s one:
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The case of our study is the air flow in a pneumatic line tube. For air at 20 °C in a tube
with an mternal radius R, = 0,75 mm:

with:

At 100Hz: &, =437.104n; s =42885

["=0,2132 ; T"=1,2064
At 500 Hz: kr =0.0022 m ; s =10,923
I"=0,1061 ; I'"=1,0957

Above 500 Hz, s = R/8 becomes very much superior to unity (the boundary layer is

thinner than the tube radius) and the attenuation of acoustical waves decreases. The small
values of k, obtained above are consistent with the domain of the "low reduced frequency"”

approximation. The acoustical pressure and velocity in dimensional form may be written
(Tijdeman, [T1j75]):
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" where n = r/R; and & = wx/c are the radial and longitudinal reduced coordonates.

I1.2. Influence of geometrical parameters of the pneumatic line

Assuming pressure fluctuations imposed at the entry of the tube to be harmonic and the air
velocity to be equal to zero at the transducer (measurement surface assumed to be rigid),
relations (3) and (4) lead to the transfer function between the pressure measured by the
transducer (x = 0) and the pressure to be measured at the entry of the tube (x = L). According
to a non-dissipative model, the resonance occurs when the tube length is equal to a quarter of
wavelength; with dissipative model the resonance frequency is a little lower. The L length of
the tube has to be as small as possible to get a higher resonance frequency. When the R, value

of the internal radius of the tube decreases, the frequency and the amplitude of the resonance
also decrease. The need for the bandwidth to be as large as possible leads to choose a low
enough value of the tube radius to decrease the resonance amplitude, without choosing a too
weak value, which produces an excessive damping phenomenon after the resonance.

The pneumatic line of an unsteady pressure measurement system often includes an
instrumentation volume between the tube and the measurement surface of the transducer. A
first approach, based on a non-dissipative model of the flow in the volume, allows to conclude
that the value of this volume has to be as small as possible. The same conclusion may be
obtained by observing that the tube is equivalent to a one degree oscillator with stiffness near



the close end, mass near the open end and viscous damping. Adding a volume decreases
stiffness, so as the resonance frequency is lowered, which is unfavourable for pressure
measurements ; the pressure amplitude that may be shown, at resonance frequency,
proportional to the square of the stiffness, decreases also that is favourable but this decreasing
is slight.

11.3. Models for a tube with a restrictor

To correct the resonance induced by the line tube, a mechanical mecthod consists in
introducing a narrowing (restrictor) of the tube between the pressure tap and the transducer.
The most reliable restrictors and the easiest to modelize, are made up with a peripheral
restriction of section, by inserting in the tube a smaller internal diameter tube. According to
Bergh & Tijdeman’s model, the length to diameter ratios of the tube and of the restrictor are
assumed large, so that end effects can be neglected. The distance between the restrictor and
the transducer's diaphragm, assumed to be rigid, is noted L;. The § tube section is locally

reduced to the S, one in the restrictor. The L, length of the restrictor is assumed to be small in
comparison with the L one of the tube:
Lx~L;+1; ®)
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Figure 1. Tube with a restrictor.

11.3.1. Dissipative model of the system

" The transfer function is obtained from the following assumptions and boundary conditions:

- the diaphragm of the transducer is rigid

- the restrictor length is small as compared as the length tube or the wavelength : by
integrating the equation of continuity on the restrictor volume, it can be shown that the
relative difference between the axial velocity at the entry and at the end of the restrictor is of
order of L, / ». Compressibility effects in the restrictor can be neglected and the equality of
these velocities may be used .

- the pressure drop induced by the restrictor is expressed as a function of a coefficient noted R
(for small values of the Stokes number s, s << 1, we shall see that R is the Poiseuille
resistance of a narrow tube for a steady-flow):

p2-p1 =Ru; =Ru, (6)

with u; =Suy and u, =S, up , where u; and iy, are respectively the mean velocity in the

tube and in the restrictor and « is the volumic flow rate. The value of R , acoustic impedance,
will be determined in the next paragraph .
By noting Z. = pgc / S, the characteristic impedance of the tube and k& = w/c the reduced

frequency, the transfer function can then be expressed
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11.3.2. Flow model in the restrictor
With a small L, restrictor length

d_p =P2-D] ()

dx L,

With the assumptions of the "low reduced frequency solution" and writing the relation (9) in a
form similar to the relation (6) leads to a frequency dependent expression of R .
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For small values of the Stokes number, s << I, the limited expansions in series of s of
the Bessel functions J, et J, lead to a frequency independent and real expression of the

coefficient R of the restrictor, noted R, a being the internal radius of the restrictor :

Co

L
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The ratio between R and R; is a complex function of frequency, which real part tends to
unity and imaginary part to zero, when o tends to zero. The difference between these two

terms remains weak on a larger frequency bandwidth than the one fixed by s = 1 .
. 11.3.3 Simplified model of the system

The transfer function (7) is complicated that prevents any a priori choice of a good geometry
of the restrictor. We propose a simplified model, based on a non-dissipative model of the flow
in the tube associated with a quasi-steady flow assumption in the restrictor (s << I), that
provides the simplified expression:

p(0,t) _ 1
R
p(Lyt) coskL +i-—-(sinkL —sink(L~2L,))

(12)

- L; = 0 : The R, term disappears in relation (12): the restrictor is ineffective with this model,
placed in an area where the flow velocity is nearly equal to zero. It comes to the case of a
simple tube.

- Ly =Ly~ L/2 : The restrictor is centred. The modulus of the pressure ratio M verifies :

R
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The first M2 extremum is obtained for kL =m /2 :
_4z;
R:?

If R, < 2 Z, it 1s a maximum: the restrictor produces an under-damping. If R, > 2 Z, it is a

M2

(14)

minimum: the restrictor produces an over-damping. If R, = 2 Z.: M? is a constant; the
restrictor is optimum. The phase ¢, that verifies (15), is then a linear function of frequency.

R L
o= g (15)

- L; = L: The restrictor is placed at the tube entry; it produces an under-damping if R, < Z,., an
over-damping if R, > Z_, and is optimum for R, = Z_, the phase ¢ being then a linear function
of frequency.

According to this simplified model, a centred restrictor which acoustic resistance is
twice the characteristic impedance of the tube (or a restrictor placed at the tube entry which
resistance is equal to the characteristic impedance) is optimum: the pressure amplitude ratio
remains constant with frequency and equal to unity, and the phase is a linear function of
frequency. The internal radius of the restrictor must be small enough and the frequency low
enough to verify the quasi-steady flow assumption s << /. For restrictors used in the
experimental study (see Section III.), this last assumption is strictly respected only for low
frequencies (N < 100 Hz); however, the difference between the theoretical responses for a
tube with an optimum restrictor, using the R; acoustic resistance or the R exact acoustic
impedance, remains weak on a larger frequency band.

Nevertheless, theoretical responses calculated with the dissipative model of the flow in
the tube, often show a residual resonance peak: a further adjustment, obtained by moving the
restrictor towards the tube entry or by using a R resistance a little higher, may then be used.

III. EXPERIMENTAL STUDY

This section presents several experimental results of the correction obtained with restrictors.
The geometrical parameters were chosen on the basis of the properties of the simplified model
presented in Section I1.3.3.

IIL.1. Great length tube with optimum centred restrictor

The Figure 2. presents the experimental and the dissipative theoretical (with the frequency
dependent R impedance) responses for a tube (length L = 350 mm, radius R; = 0,75 mm) with
a centred optimum restrictor (length L, = 8,56 mm, radius @ = 0,17 mm). The agreement
between theory and experiment is satisfying, and the result shows the existence of a small
residual peak: the damping of the first resonance of the simple tube is obtained with the
optimum centred restrictor, the amplitude ratio remaining close to unity within the limits of +

10 % on the bandwidth 0-200 Hz. A better accuracy could be obtained by moving the
restrictor towards the tube entry, but the damping after the resonance would then be faster.
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Figure 2. Experimental and theoretical characteristics for a tube (L = 350 mm, R, = 0,75 mm)
with an optimum centred restrictor (L, = 8,56 mm, a = 0,17 mm).

IIL.2. Short length tubes with unknown volume and optimum restrictor

The Figure 3. presents the experimental amplitude characteristics for two short tubes
(L =51 mm and 56 mm, R; = 0,75 mm) connected to a small instrumentation volume (whose
value is unknown), and the diaphragm flexibility is non negligible. For these two tubes, the
useful bandwidth before correction is limited to the frequency band 0 - 250 Hz.
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Figure 3. Experimental characteristics for two tubes (L =51 mm and L = 56 mm ,
R, = 0,75 mm) with an unknown volume.

The correction method consists in inserting a restrictor whose geometry has been calculated to
be optimum in a centred position, according to the simplified model (L, = 5,2 mm, a = 0,15
mm). The existence of the unknown volume and the diaphragm flexibility lead to an over-
damping, when the restrictor is centred: after a further experimental adjustment, the restrictor
is placed in the position @ = .; /[, = 0,4. The Figure 4. presents the experimental amplitude
characteristics obtained after correction. The useful bandwidth after correction for the L = 51
mm tube 1s 0 - 600 Hz, the amplitude ratio between the pressures measured and to be
measured remaining close to unity within the limits of + 10 %. For the L = 56 mm tube, the
useful bandwidth after correction is 0 - 500 Hz, the amplitude ratio remaining close to unity

within the limits of + 5 % .
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Figure 4. Experimental characteristics for two tubes (L =51 mm and L = 56 mm ,
R,=0,75 mm) with an optimum restrictor (L. =5,2mm,a=0,15mm,a =L,;/L = 0,4).
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IV. CONCLUSION

From the study of the transfer function of the pneumatic line between the pressure tap and the
transducer, we tried to foresee the geometry of this liaison, so as it would perturb as less as
possible the measurement of unsteady pressures, on a large enough frequency band.

Minimising the tube length and the instrumentation volume value provides a higher first
resonance frequency. Using a small enough internal radius of the tube decreases the resonance
amplitude; nevertheless, a too weak value would produce an over-damping.

A pneumatic line including a restrictor is then used to damp the resonance amplitudes.
We proposed a simple model, with a non-dissipative model of the flow in the tube and a quasi-
steady flow assumption in the restrictor (s << /): for a centred restrictor whose acoustic
resistance is twice the characteristic impedance of the tube (or a restrictor placed at the tube
entry, its resistance being equal to the characteristic impedance), there is no frequency
dependence of the modulus of the pressure transfer function, and the phase is a linear function
of frequency.

The amplitude of the first resonance calculated from the complete theory is a little higher
than the approached one: moving the restrictor towards the tube entry provides a further
adjustment of this amplitude closer to the unity. An example of a pneumatic line with an
instrumentation volume and a non-negligible diaphragm flexibility is given : the first resonance
amplitude and its frequency are then lowered : moving the restrictor towards the transducer
provides a further adjustment.
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