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ABSTRACT
This paper presents a comparison of numerical methods used to model large scale acoustic coupled fluid-
structure interaction (FSI) problems for single and double-walled cylindrical shells. The finite element method
(FEM) is used to model the structure while the fast multipole boundary element method (FMBEM) is used
to model the fluid domain and both models are coupled on the shared boundary surface to allow for the FSI,
yielding a coupled FEM-FMBEM formulation. At suitably high frequencies the statistical energy analysis
(SEA) method may instead be used to model both the complete fluid domain and the structure. The FEM-
FMBEM and SEA models are compared for two structural configurations. The first involves a single-walled
cylindrical shell while the second case involves a double-walled cylindrical shell, where two cylindrical shells
of different radii encapsulate an interior body of water. The SEA model is seen to provide substantially faster
solution times at high frequencies, while yielding similar results to the FEM-FMBEM model.
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1. INTRODUCTION
Underwater sound radiation from single and double-walled cylindrical shells may be numerically modelled

as a coupled fluid–structure interaction (FSI) problem for which the acoustic and structural responses are
solved simultaneously. Coupled FSI problems involving finite elastic structures submerged in unbounded
fluid domains are typically modelled by coupling a finite element method (FEM) model of the interior elastic
solid domain to a boundary element method (BEM) model of the exterior fluid domain via a coupling of the
unknowns at the shared boundary surface between the two domains (1). Such a coupled FEM–BEM model
configuration is advantageous as the FEM specifies material properties on a per–element basis, allowing for
complex internal structures to be modelled, while the BEM represents the infinite exterior fluid domain by a
surface–only discretisation.

The principal disadvantage of the coupled FEM–BEM models are due to the computational requirements
of the BEM for large–scale problems, as the boundary surface must be discretised into a mesh with a certain
number of boundary elements per fluid wavelength to achieve an acceptable solution accuracy (2). Thus, for
large–scale problems the BEM discretisation yields a large number of elements/unknowns and the resulting
coefficient matrix is fully populated and complex valued, being of size NBE ×NBE for NBE unknowns in the
BEM domain. The direct solution of such a problem requires the order of O(N3

BE) operations, an iterative
solution requires the order of O(N2

BE) operations per iteration, and the storage requirements of the matrix
are proportional to O(N2

BE), all of which constitutes a prohibitive cost for large NBE . The computational and
memory requirements of the BEM may be substantially alleviated by applying the fast multipole method
(FMM) (3) to the 3D Helmholtz boundary integral equation (BIE) used to represent the fluid domain (4).
The fast multipole BEM (FMBEM) can reduce the algorithmic complexity of the matrix–vector products
in the iterative BEM solution to O(NBE logNBE) and the memory requirements to O(NBE), depending on the
frequency range of interest and FMM algorithm employed.

The use of coupled FEM–FMBEM formulations for large scale FSI problems was first implemented by
Fischer and Gaul using a mortar coupling method between non–conforming meshes (5), and by Schneider
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using a direct coupling between conforming meshes (6). Such FEM–FMBEM models have been applied to a
number of large scale models, including cylindrical shells (7), ship hulls (8, 9) and other partially submerged
bodies (8, 10).

Higher frequency problems are better suited to probabilistic techniques, such as the statistical energy
analysis (SEA) method (11), which can be similarly applied to coupled FSI problems (12, 13). SEA models
represent the full problem as a series of simplified subsystems, where the storage, transport and dissipation of
energy between subsystems provides the required coupling between subsystems to represent the full model.
The main advantages of the SEA method are that the number of unknowns is not proportional to the problem
wavelength (instead there is typically only one energy unknown per subsystem), and so the total problem size
is significantly reduced compared to domain discretisation methods. The method also inherently provides
statistical parameters of the model (mean, variance) without the need to run probabilistic simulations. The
SEA model assumes that the subsystems are large compared to the wavelength of interest to allow for their
statistical representation in the full model, and so the model is restricted to higher frequencies. In situations
where an SEA subsystem is small compared to the wavelength in that domain, the response of the subsystem
will be well defined by a small number of dominant mode shapes and so the statistical representation of the
SEA will provide poor results. For these cases a hybrid FEM-SEA model may be employed, where the small
subsystems are modelled with the FEM (14, 13).

In this paper, a coupled FSI problem for a cylindrical shell is treated via both an FEM–FMBEM model and
an SEA model for two problem configurations. The first configuration involves a single-walled cylindrical
shell with flat circular end plates submerged in water, and the second configuration involves a submerged
double-walled cylindrical shell, where two cylindrical shells of different radii encapsulate an interior body
of water and are similarly terminated by flat circular end plates. A comparison of the results using the two
numerical approaches is presented for the two configurations. The paper is organised as follows. Section 2
provides details of the problem configurations for the two cylindrical shells, Section 3 briefly explains the
formulation of the FEM, FMBEM and SEA models, Section 4 details the coupling formulations for the FSI
and the corresponding numerical solution procedures for each model, Section 5 presents the numerical results
for both single and double-walled cylindrical shells and discusses the relative performance of the different
formulations used, and Section 6 presents the conclusions.

2. PROBLEM CONFIGURATIONS
This section provides details of the model configurations and material properties used for the single and

double-walled cylindrical shells in the various numerical models. Schematics for the single and double-walled
cylindrical shell configurations are presented in Figure 1 and the material properties of the water and steel are
listed in Table 1.

Figure 1 – Schematics for the single and double-walled cylindrical shells. The cross–sectional side view for
each cylindrical shell (inset (a) and (b)) indicates the fluid domains and surface normals. Both models are
excited by a point force F in the +x–direction applied at the junction of the small cylinder and one end plate.
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Table 1 – Material properties for the single and double-walled cylindrical shells.

Parameter Notation Value Unit

Density of water ρ f 1000 kg/m3

Sound speed in water c f 1500 m/s

Density of steel ρs 7860 kg/m3

Young’s modulus (cylinder) Ecyl 210 GPa
Young’s modulus (end plates) Eend 210 TPa
Poisson’s ratio ν 0.3 -

Note that the Young’s modulus for the flat circular end plates has been artificially increased by three orders
of magnitude (compared to the typical value for steel) to account for the fact that more realistic doubly-curved
end closures such as hemispheres are much stiffer than the flat end plates used here, which otherwise would
significantly affect the acoustic response of the cylinder models.

3. NUMERICAL MODELS
This section introduces the FEM, FMBEM and SEA methods used to model the coupled FSI formulations

for both the single and double-walled cylindrical shells.

3.1 FEM
Assuming an e−iωt time dependence, the discretised FEM matrix equation for a finite structural domain

takes the form (15) (
K− iωD−ω

2M
)

u = fs (1)

where K, D and M are respectively the stiffness, damping and mass matrices, each being sparse, symmetric
and of size NFE ×NFE for NFE structural unknowns, u and fs are respectively the NFE nodal vectors of the
structural displacement unknowns and applied time–harmonic structural forces, ω = 2π f for frequency f and
i =
√
−1. Here, the structural damping is modelled as frequency–independent hysteretic damping, and so the

damping matrix D is related to the stiffness matrix K as

D = (1− iη)K (2)

where η = 0.02 applies a 2% structural loss factor. Here, the required FEM models are constructed in ANSYS
using 8–node quadratic isoparametric shell elements and the resulting K, D and M matrices are imported into
the coupled FEM–FMBEM solver implemented in MATLAB.

3.2 FMBEM
The discretised Helmholtz boundary integral equation (BIE) for an exterior fluid domain using the Burton–

Miller formulation (16) takes the form(
α

1
2
+L+αL′

)
q−

(
− 1

2
+M+αM′

)
p = pi +αqi (3)

where L, L′, M and M′ are the discretised coefficient matrices of the surface integrated Helmholtz Green’s
function and its normal surface derivatives, each being of size NBE ×NBE for NBE boundary unknowns, p and
q are the NBE nodal vectors of surface pressure and normal derivative of the surface pressure (related to the
fluid particle velocity v f = iωρ f q), pi and qi are the corresponding p/q vectors for an incident acoustic field
impinging the boundary surface and α is the Burton–Miller coupling parameter, chosen here to be α = 0.05i

k
for wavenumber k (17). Upon substitution of a suitable boundary condition to eliminate one of the surface
unknowns (p, q), Equation (3) constitutes an exactly solvable system of equations for the NBE unknowns.

The BEM coefficient matrices are fully populated, and so the computational/memory cost of the iterative
BEM solution is proportional to O(N2

BE). The FMBEM reduces this algorithmic cost by approximately
calculating the BEM matrix–vector product to a prescribed accuracy (17), but without explicitly forming nor
directly multiplying the full coefficient matrix. The central idea of the FMBEM is to ‘factorise’ the fundamental
solution of the Helmholtz BIE via series expansions, for example (17)

G(x,y) =
eikr

4πr
= ik

∞

∑
n=0

n

∑
m=−n

Sm
n (x− c)R−m

n (y− c) (4)
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where r = |x−y| for the source point x and receiver point y. The S and R expansions may be independently
calculated about a common expansion point c without requiring knowledge of both the source and receiver
locations. This allows the FMBEM to apply interactions between groups of source and receiver points
which share common expansion centres (Figure 2a), instead of explicitly calculating and storing the pairwise
interactions between each pair of collocation points, as is done with standard BEM. Each local source group
may only interact with the receiver groups which are ‘well separated’ from it, with the required separation
distance being proportional to the geometric size of the group i.e. large groups may only interact over large
separation distances. Thus, the FMM procedure is applied to the far field part of the surface integration for
each receiver point, which can be envisaged as the large off–diagonal part of the full BEM coefficient matrix,
while the sparse near field part of the BEM matrix (containing the regions of source points which are not well
separated for each receiver) is directly calculated and stored (Figure 2b).

Figure 2 – Interactions between well separated groups of source/receiver points using multipole expansions
with local expansion centres (a) and the corresponding equivalent calculation of the full BEM iterative solution
matrix–vector products via the FMM (b). The large off-diagonal part of the coefficient matrix which represents
the far field region of the surface integrals is treated by the FMM and so is not directly calculated/stored, while
the sparse diagonal near–field region is calculated/stored as with the conventional BEM.

The required BEM models are constructed in GMSH using piecewise constant plane triangular elements
with one collocation point in the centre of each element. These models are used in a broadband Helmholtz
FMBEM (developed in MATLAB) which is coupled to the FEM for the FEM–FMBEM solver. The interested
reader is referred to (17) for further details on broadband FMBEM models.

3.3 SEA
The SEA models the full structure as a series of interconnected subsystems whose average energies are

related by the power injected into each subsystem and the power loss in each subsystem due to both dissipation
within and coupling between subsystems. Applying a power balance for each subsystem yields a matrix
equation of the form (12)

XE = P (5)

where X is the coefficient matrix of subsystem dissipation and coupling loss factors of size NSE ×NSE for NSE
statistical energy subsystems, E is the NSE–element vector of average subsystem energies and P is the equal-
sized vector of the input powers injected into each subsystem. For a set of coupled subsystems representing
the full single and double-walled cylinders which have known dissipation/coupling loss factors and a known
input power (i.e. due to the applied time–harmonic force), the subsystem energies E may be solved for and
in turn used to calculate the radiated sound power from the cylinder models. The coupled FSI between the
acoustic/structural domains and the incorporation of FE subsystems for the stiff end plates complicates the
SEA implementation. The interested reader is referred to (12) and (13, 14) for details on the SEA for coupled
FSI and the hybrid FEM-SEA models respectively. Here, the hybrid FEM-SEA models were constructed and
solved using the VA One software suite developed by ESI.

4. COUPLING FORMULATIONS FOR FSI
This section presents the coupling formulations and solution methods employed to model the FSI between

the fluid and solid domains, in particular for the FEM–FMBEM models of the single and double-walled
cylinders. The analogous implementations for the hybrid FEM-SEA models are automatically applied by the
VA One software between the corresponding FEM/SEA subsystems and hence are not discussed further.

The general coupling procedure for relating the unknowns between the FEM and FMBEM formulations
applies the following continuity conditions at the shared boundary surface between the fluid/solid domains
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1. The surface normal stress must be equal and opposite to the fluid pressure, while the tangential stress
components must be zero as the fluid cannot support shear stresses (1). This condition is incorporated
into the FEM matrix equation as an equivalent fluid loading force f f via the coupling matrix Cs f

f f = Cs f p (6)

which relates the FEM to the FMBEM unknowns on the structural surface and has rectangular dimensions
of NFE ×NBE . Further details on the construction of coupling matrices is given by Peters et al. (18).

2. The required continuity of displacement normal to the shared boundary surface relates the FMBEM fluid
particle velocities v f to the FEM displacements as

v f =−iωC f su (7)

where C f s is an analogous coupling matrix which relates the FMBEM to the FEM unknowns on the
structural surface and has rectangular dimensions of NBE ×NFE (18).

Thus, the coupled forms of Equations (1) and (3) which relate the displacements and pressures on the
shared boundary surface can be written as a coupled matrix equation (assuming no incident acoustic field) as[

KFE −Cs f

−iωGC f s H

][
u
p

]
=

[
fs

0

]
(8)

where

KFE =
(
K− iωD−ω

2M
)

(9)

G =

(
α

1
2
+L+αL′

)
iωρ f (10)

H =

(
1
2
−M−αM′

)
(11)

The full coefficient matrix in Equation (8) is not explicitly constructed due to the FMBEM treatment of the G
and H matrices. The following subsections present the iterative solution and preconditioning strategies used
for the coupled FEM–FMBEM models based on Equation (8) for the single and double-walled cylindrical
shells.

4.1 Single-Walled Cylindrical Shell FEM–FMBEM Solution
The coupled system of equations in Equation (8) representing the single-walled cylindrical shell may be

directly solved using an iterative solution method such as the flexible GMRES (19) solver to simultaneously
solve for both the structural displacements and surface pressures. However such methods are slow to converge
(as shown by Brunner et al. (7)) and so the ‘Schur complement’ is used here to solve the reduced system(

H− iωGC f sK−1
FECs f

)
p = iωGC f sK−1

FE fs (12)

for pressure and the displacements are recovered from p as

u = K−1
FE
(
fs +Cs f p

)
(13)

The numerical solution of Equation (12) is advantageous as only the smaller set of NBE pressure unknowns
must be iteratively solved, but requires the inverse of the combined FEM matrix (Equation (9)) to be applied
each iteration. In this work, the FEM matrix inverse is constructed using the Crout ILU factorisation with a zero
drop tolerance, as well as reordering of KFE using the symmetric approximate minimum degree permutation
to reduce the fill–in of the resulting sparse lower/upper triangular matrices. The Crout implementation of
the ILU typically reduces the storage requirements by a factor of 6 compared to the full LU matrices. The
ILU matrices are thus precomputed and stored, and then called in each iteration of the solution, where the
multiplication of K−1

FE with the current solution vector via the ILU matrices is very fast to compute. Hence, the
dominant cost in the iterative solution of Equation (12) is due to the FMBEM calculations of G and H.

Equation (12) is solved using a flexible inner–outer iterative GMRES (fGMRES) solution method, where a
fast low accuracy FMBEM is solved to a coarse convergence tolerance of 0.2 in the inner GMRES loop, and
this preconditioned solution is then used in the full accuracy FMBEM in the outer GMRES loop, which is
solved to a fine convergence tolerance of 10−5. In both cases the required K−1

FE multiplication operations are
calculated using the same ILU matrices. Additionally, the inner GMRES loop is itself preconditioned using a
sparse approximate inverse (SAI) preconditioner (20) constructed from the sparse near field FMBEM matrices.
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4.2 Double-Walled Cylindrical Shell FEM–FMBEM Solution
The double-walled cylindrical shell involves both an infinite exterior fluid domain coupled to the outer

shell and the finite interior fluid region encapsulated by the outer and inner shells, with both regions treated
here using the FMBEM. The governing Helmholtz BIE for the interior fluid domain has exactly the same
form as in Equation (3) for the infinite exterior domain. The surface normal is defined as pointing towards
the interior fluid as indicated by nin in the inset of Figure 1b. The exterior and interior FMBEM models must
then be independently coupled to the structural FEM via separate coupling matrices which relate the structural
unknowns on the outer/inner FEM surface to the corresponding FMBEM models. Denoting the exterior and
interior FMBEM pressure unknowns as pext and pint respectively thus yields the following matrix equation KFE −Cext

s f −Cint
s f

−iωGextCext
f s Hext 0

−iωGintCint
f s 0 Hint


 u

pext

pint

=

 fs

0
0

 (14)

where Cext
s f and Cint

s f are the FEM to FMBEM coupling matrices for the exterior and interior FMBEM vectors of
pressure unknowns respectively, Cext

f s and Cint
f s are the corresponding FMBEM to FEM coupling matrices, and

the H and G matrices for the exterior/interior fluid domains are similarly denoted by the ext and int superscripts.
In particular it should be noted that there is no explicit coupling between the exterior and interior pressures
in Equation (14), as indicated by the all–zero submatrices in the coupled coefficient matrix, and so the only
interaction between the exterior and interior fluid domains is through the coupling to the structural FEM. The
Schur complement for Equation (14) simultaneously solves for both the exterior and interior pressures([

Hext 0
0 Hint

]
− iω

[
Gext 0
0 Gint

][
Cext

f s

Cint
f s

]
K−1

FE
[
Cext

s f Cint
s f
])[ pext

pint

]

= iω

[
Gext 0
0 Gint

][
Cext

f s

Cint
f s

]
K−1

FE fs (15)

and the displacements may then be recovered as

u = K−1
FE

(
fs +

[
Cext

s f Cint
s f
][ pext

pint

])
(16)

Equation (15) is similarly solved using a flexible inner–outer iterative GMRES solution method (using the
same convergence tolerances as previously specified), K−1

FE is applied using the ILU factorisation and the fast
low accuracy FMBEM for the inner GMRES loop is now preconditioned using a block diagonal form of the
SAI preconditioners (applied separately to the exterior/interior FMBEM models).

5. NUMERICAL RESULTS
Numerical results for the single and double-walled cylindrical shells are presented from both the FEM–

FMBEM and FEM–SEA models in the form of the radiated sound power and the far field pressure. FEM–
FMBEM pressure/displacement results are also shown for each of the highest modelled frequencies. All
FEM–FMBEM models were solved on the Leonardi High Performance Computing cluster at the Faculty of
Engineering, UNSW Australia, requiring one 64 processor node with 120GB of RAM for the largest models.
The FEM–SEA models were solved on a standard desktop workstation.

5.1 Single-Walled Cylindrical Shell
Figure 3 shows the real components of the pressure and displacement for the FEM–FMBEM single-walled

cylindrical shell at the highest modelled frequency of 700Hz. The pressure range in Pascals is indicated by the
colour bar (Figure 3a), while the FEM displacement field in Figure 3b has been greatly exaggerated using a
scaling factor to show the surface variation (red wire frame mesh) compared to the unperturbed mesh (green
wire frame mesh). The outward radial displacements correspond to positive pressures on the cylindrical shell
as expected, while the dominant surface variation in the results corresponds to a flexural wave which has a
smaller wavelength than both the shear wavelength in the steel and compressional wavelength in the fluid.

Figure 4 presents the total radiated sound power and far field pressure versus frequency for the single-
walled cylindrical shell calculated using both the FEM–FMBEM and FEM–SEA methods. The FEM–FMBEM
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Figure 3 – Real components of the coupled pressure and displacement results from the FEM–FMBEM single-
walled cylindrical shell at 700Hz. At this frequency the FEM mesh consists of 30,720 quadratic isoparametric
shell elements and the FMBEM mesh consists of 132,102 piecewise constant plane triangular elements.

results are presented for three mesh discretisations used over the different frequency ranges as indicated in
Figure 4. Good agreement is observed between the overlapping frequency regions between the successively
refined FEM–FMBEM meshes. Below 80Hz a number of peaks are observed in the FEM–FMBEM results
which correspond to the low order cylinder bending modes excited by the applied transverse point force. The
FEM–SEA model is unable to provide reliable results at the lower frequencies due to both the low modal
density over this frequency range and the inherent averaging effect of the method. Reasonable agreement
between the FEM–SEA and FEM–FMBEM models is observed above 150Hz, where both models predict a
peak in the radiated sound power between 150–200Hz corresponding to the cylinder ring frequency of the
single-walled cylindrical shell, followed by a slow decay with increasing frequency. The FEM–SEA model
is seen to consistently overpredict the radiated sound power compared to the FEM–FMBEM model above
200Hz.

5.2 Double-Walled Cylindrical Shell
Figure 5 shows the real components of the pressure and displacement for the FEM–FMBEM double-walled

cylindrical shell on the exterior shell surface, while Figure 6 shows similar results for the interior fluid region
and the inner shell surface. For both figures the pressure ranges are indicated by the respective colour bars,
while the displacements have again been exaggerated using a common scaling factor to show the surface
variation (red wire frame meshes) compared to the unperturbed mesh (green wire frame meshes). The outer
and inner cylindrical shells can be seen to be vibrating in phase, while the positive radial displacements of
the outer cylindrical shell correspond to positive pressures on the outer shell surface and negative pressures
on the outer surface of the inner fluid domain (i.e. on the underside of the outer cylindrical shell). Again, the
dominant surface variation in the double-walled cylindrical shell pressures and displacements correspond to a
flexural wave whose wavelength is much smaller than that of the shear and compressional waves in the solid
and fluid media, respectively.

Figure 7 presents the total radiated sound power and far field pressure versus frequency for the double-
walled cylindrical shell calculated using both the FEM–FMBEM and SEA methods. The FEM–FMBEM
results are presented for two mesh discretisations used over the different frequency ranges. Discrepancies
between the calculated sound power/far field pressure results between the two mesh discretisations can be seen
above 125Hz, indicating that the coarser mesh does not have an adequate mesh resolution to solve the problem
above this frequency. Good agreement is observed in the overlapping 100–125Hz range for the two meshes.
The FEM–FMBEM model similarly predicts a number of cylinder bending modes below 80Hz which are again
absent in the FEM–SEA results, as was the case for the single-walled cylindrical shell. Reasonable agreement
between the FEM–SEA and FEM–FMBEM models is observed above 125Hz, where both models predict a
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peak in the radiated sound power at approximately 150Hz corresponding to the cylinder ring frequency of the
double-walled cylindrical shell, followed by a slow decay with increasing frequency.

Figure 4 – Total radiated sound power (a) and far field pressure (b) versus frequency for the single-walled
cylindrical shell.

Figure 5 – Real components of the coupled pressure and displacement results from the FEM–FMBEM double-
walled cylindrical shell at 200Hz for the outer shell surface. At this frequency the FEM mesh consists of 14,336
quadratic isoparametric shell elements and the outer FMBEM mesh consists of 42,596 piecewise constant
plane triangular elements.

6. CONCLUSIONS
This paper has presented a comparison of the numerical results for the FEM–FMBEM and SEA models for

two large scale models involving a single and a double-walled cylindrical shell. Good agreement between the
deterministic and statistic models was observed at frequencies above 150Hz for the single-walled cylindrical
shell and 125Hz for the double-walled cylindrical shell, while the FEM–SEA model was several orders of
magnitude faster and required very minimal computational resources and is recommended to be used above
these frequencies. At frequencies below 125–150Hz, or at any frequency where the full coupled displacement
and pressure fields are required, the FEM–FMBEM model is recommended.
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Figure 6 – Real components of the coupled pressure and displacement results from the FEM–FMBEM double-
walled cylindrical shell at 200Hz for the inner cylindrical shell surface. At this frequency the FEM mesh
consists of 14,336 quadratic isoparametric shell elements and the inner FMBEM mesh consists of 69,440
piecewise constant plane triangular elements.

Figure 7 – Total radiated sound power (a) and far field pressure (b) versus frequency for the double-walled
cylindrical shell.
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