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ABSTRACT 

During the process of bubbles interacting with particles, the bubble movement velocity, jetting phenomenon, 

topological deformation, and even properties of flow field may demonstrate novel variation. To investigate 

these characteristics, the lattice Boltzmann method (LBM) which is based on kinetic theory is adopted to 

build up the three dimensional coupled model. The gas-liquid interface with large density ratio is described 

with free-energy based lattice Boltzmann multiphase model, and the fluid-structure boundary is implemented 

in the form combining LBM and finite difference method (FDM). Except the obvious and traditional 

phenomenon such as large interface deformation and velocity variation, it has been found that the 

gravity-driven spherical bubble finally become a bubble ring after the coupling process. Combining the 

intrinsically microscopic property of LBM, the complex coupling process is researched with deeper study on 

relative size and fluid properties. The results may not only advance the LBM application in multiphase 

coupling field, but make a significant insight into the micro-transient phenomena of bubbles interacting with 

particles. 
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1. INTRODUCTION 

Due to the existence of solid boundary nearby the bubble, the bubble motion and deformation may be 

more complex and interesting (1). Understanding that bubble dynamics can be quite valuable in the areas 

such as underwater noise, structure vibration, or even explosion shock and cavitations damage (2-4). 

Though for the variety of solid boundary, the interaction between bubbles with different boundary 

conditions is widely researched, a large part of it is focused on the plane and infinite walls (5). Nevertheless, 

in a gas-liquid-solid mixture, the microscopical bubble is strongly influenced by the surrounding particles. 

Mileva E. (6) researched the hydrodynamic interaction of a solid particle and boundary layer around a 

rising bubble. Yoon R. (7) studied the effects of hydrodynamic and surface forces on the interaction of 

bubble and particles. 

The lattice Boltzmann method is a rapidly developed numerical method in both single-phase flows and 

multi-phase flows in recent years. The method predicts the fluid behavior by solving the Navier-Stokes 

equations. Specially, for a multi-phase model, an additional equation is adopted to capture the interface (8, 

9). An another focus of attention is the effective lattice discreteness of a body force in using LBM. Of 

varied schemes, that provided by Guo Z. (10) is one most effective scheme. Combining this scheme, Zheng 

H. et al. (9) introduced the surface tension as a body force in the multi-phase model which is based on the 

free-energy model. Coming up next, Zheng H. et al. (11) expanded the two-dimensional multi-phase model 

into a three dimensional model using different lattice velocity model for two lattice Boltzmann equations. 

On this foundation some novel and interesting multi-phase physics are investigated. Huang H. et al. (12) 

simulated one bubble rising process under different Reynolds numbers. Cheng M. et al. (13) studied 

                                                        
1
 shidongyan@hrbeu.edu.cn 

2
 zhikai.wa@gmail.com 

3
 amanzhang@gmail.com 



Page 2 of 9  Inter-noise 2014 

Page 2 of 9  Inter-noise 2014 

multiple bubbles rising under gravity in a quiescent viscous incompressible fluid. Ghosh S. et al. (14) 

studied the rayleigh-taylor instability and bubble dynamics from a view of real physical parameters. In the 

simulation of bubble interaction with spherical particles, the fluid-structure boundary treatment is also an 

issue worthy of remark. To be not less than the precision of the whole lattice Boltzmann model, the second 

order accuracy must be satisfied (15, 16). 

In this paper, a lattice Boltzmann multi-phase model based on the free-energy scheme and a modified 

bounce back scheme (17) combining the finite difference method in dealing with the solid boundary at a 

mesoscopic level are combined together. Taking this as the model, both the fluid property and the relative 

position effecting on the interaction are investigated. Furthermore, under a certain condition of fluid 

property, the further research of the influence of relative size is developed. 

2. FORMULATION AND NUMERICAL METHOD 

2.1 Lattice Boltzmann Method 

The traditional lattice Boltzmann equation considering the body force can be written as (10) 

/i i i i if t f F∂ ∂ + ⋅ ∇ = Ω +e  (1) 

where i stands for the discrete direction. if  is the number density distribution function in the i direction. 

ie  is the microscopic velocity in the i direction. iΩ  is the non-linear collision term which can be 

approximately replace by a linear term (18)， 

1 / ( )eq

i i if fωΩ = ⋅ − . (2) 

ω  is the relaxation time parameter. 
eq

if  is the equilibrium distribution function (EDF) which is relative 

to the lattice structure. For D3Q19 model used here, the EDF is chosen to be 
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u is the macroscopic velocity, and sc  is the lattice sound velocity, 1 / 3sc = . it  is the weighting factor, 

0 1 / 3t = , 1~6 1/18t = , 7~18 1 / 36t = . φ  and φµ  are two parameters related to the multi-phase interface 

capture, and a detailed introduction will be given in the next section. 

iF  is a discrete body force in the micro-velocity direction. In 2002, Guo. Z. (10) provide an effective 

form, which gives 
2 4(1 1 / 2 ) ( ) / ( ) /i i i s i i sF t c c Fω  = ⋅ − ⋅ − + ⋅ ⋅ ⋅ e u e e u . (4) 

and F is the macro-body force. 

By multi-scale expansion, and the following constrains, 
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Eq. (1) can recover the Navier-Stokes with second-order precision. 

2.2 Multiphase Interface Treatment 

The interface movement of two phases composed of the liquid phase, lρ  = 1000, and the gas phase, 

1gρ = , is predicted by using a diffusion interface approach. The evolution process can be expressed as (9) 

2/ ( )t φφ φ θ µ∂ ∂ + ∇ ⋅ = ⋅∇u . (6) 

φ  is the defined order parameter. θ  is the mobility, and φµ  is the chemical potential. Instead of discrete 

operation, a modified lattice Boltzmann equation(19) is adopted to solve Eq. (6), 
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( , ) ( , ) 1 / ( ( , ) ( , )) (1 )( ( , ) ( , ))eq

i i t t i i i i t ig t g t g t g t q g t g tδ δ τ δ+ ⋅ + = + − + − + ⋅ −x e x x x x e x . (7) 

ig  is another number density distribution for the order parameter φ . τ  is the corresponding relaxation 

parameter related to q, 1 / ( 0.5)q τ= + . θ  can be calculated, 
21/ 2( 2 ) tq qθ τ δ= − − Γ . Γ  is a control 

parameter. The chemical potential φµ  can be derived from the free energy density function (20)， 
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where W is the interface thickness, and σ  is the surface tension. The order parameter 
*φ  equals to 

( ) / 2l gρ ρ− . For the D3Q7 model is enough to recover the Cahn-Hilliard equation which does not require 

the fourth-order isotropic lattice tensor (11). Based on three constrains on zero, first and second moments of 

the equilibrium distribution, the equilibrium distribution function can be written as (11) 
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2.3 Solid Boundary Treatment 

As the spherical particle is stationary, the real boundary velocity can be assumed to be zero, and the 

simplified expression for ~

i

f  coming from the solid boundary can be written as (17) 

~

( ) 2

1 2( , ) ( , ) ( ( (2 ) )) /eq

t i i i s
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f t f t t cδ ρ η η+ − = − ⋅ + −x x e u u . (10) 

η  is the coefficient connected with numerical stability, 1η = − ∆ . ∆  is a parameter determined by the 

position where the real boundary crossing with the lattice link. Assuming 1x  is the solid node position 

nearest to the real wall, sx  and 2x  stand for the neighboring solid node and the fluid node in i and 
~

i  

directions, respectively. Then ∆  can be expressed as 1| | / | |s w s∆ = − −x x x x , and 1u , 2u  can be 

calculated by 
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where 
1x

u  and 
x2

u  are the macroscopic velocity at nodes 
1

x  and 
2

x . 

3. RESULTS AND DISCUSSION 

3.1 Validation 

As benchmark problems, a bubble in the stational liquid and flow over circular cylinder are simulated to 

verify the lattice Boltzmann implement of gas-liquid and fluid-structure interfaces in the model. The state 

of a stable gas-liquid interface in liquid can be described by the Laplace law (12), 

2 /P Rσ∆ = . (12) 

A computational domain of 120*120*120 is used to test the bubbles with the radius 15, 20 and 25, 

respectively. Periodic boundary conditions are applied on the surrounding boundaries. The parameters are 

set as: 1000lρ = , 1gρ = , 0.6ρτ = , 0.6φτ = . The numerical results compared with the theoretical 

results are shown in Table 1. 

Table 1 – Verification of the Laplace Law 

R σ  P∆  (this paper) P∆  (theory) Err(%) 

15 2.0 0.2699 0.267 1.0861 

20 2.0 0.1999 0.200 0.05 

25 2.0 0.1593 0.160 0.4375 

Moreover, the case of flow over circular cylinder where the computational domain is 1600*400, and the 
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cylinder radius is 20 is simulated. The Reynolds number (Re) is 100. The obtained Cd and Cl are in Figure 

1.  
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Figure 1 – Histories of the drag (Cd) and lift (Cl) coefficients 

Table 1 shows that the numerical simulation values match well with the theoretical calculating 

results in capturing the bubble interface. The increase of inaccuracy in case 3 is caused by boundary 

effect of the stable computational domain. Fig. 1 shows a good handling capacity of fluid-structure 

boundary in the model. 

3.2 Influence of Fluid Properties 

The fluid properties can be defined by the following two parameters (9, 20): 
2 4 2 3/ , / ( )b H HEo g d Mo gρ σ ρµ ρ σ= ∆ = ∆ , (13) 

where g is the gravity acceleration, H Lρ ρ ρ∆ = − , and Hµ  stands for the viscosity of the liquid phase. 

The dimensionless time variable b
r

d
t

g
= , and 

b
d  is the diameter of the bubble. 

     

 Figure 2 – Bubble rising process with an object on the trajectory path 

Figure 2 shows the rising process of an bubble with an object on the trajectory path with Eo = 15.985, 

Mo = 1.20237. The relative size is 0.8β = . At the initial stage, the bubble rises as an isolated bubble in 

static flow field (11). As the bubble rises, the particle effect becomes obvious. The upper part of the bubble 

becomes flattened, depressed, and finally a bubble ring appears. 
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Figure 3 – At t = 7000, the (a)velocity field and (b) pressure field on bubble surface 

Figure 3 is clipping views of the bubble interaction with the particle. (a) and (b) display the velocity 

field and the pressure field, respectively. Figure 3(a) shows the initial stage of a bubble ring appearance 

with an hole at the bottom of the bubble. The velocity vector suggests a jet impacting the particle. Figure 

3(b) shows the corresponding pressure distribution. A low pressure area appears around the impingement 

hole.  

   

Figure 4 – At t = 8000, bubble deformation and velocity distribution under different fluid property 

    
Figure 5 – At t = 8000, bubble deformation and pressure distribution under different fluid property 

Keeping the value of Eo stable, the deformation, velocity and pressure distribution with 

0.49328,1.20237,2.49723Mo =  are shown in Figures 4~5. A particular phenomenon that the interaction 

process is accelerated as the Mo decreases occurs. The bubble ring already turns up at t = 8000 with 

0.49328Mo = , while the jet phenomenon just happens with 1.20237Mo = . For the larger Mo which is 

2.49723, there is quite a long process before the jet happens. During the interaction, the fluid particles on 

the bottom part of the bubble move more faster comparing with that on the other part. Figure 4 shows that a 

high pressure area turns up between the bubble and the particle as the bubble approaches the solid wall. On 

the effect of letting out pressure when the impingement hole is formed, the pressure at the location between 

the bubble and the particle degrades rapidly.  
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Figure 6 – Under different conditions of fluid property, (a) histories of the bubble center position; 

(b) histories of the pressure at node (55,55,150) 

Under different conditions of fluid property, the initial position of the bubble is kept at (55,55,61). 

Figure 6(a) and (b) record the histories of the bubble center position and the pressure at the node 

(55,55,150) under the spherical particle. The nondimensional time is normalized by the parameter 

b
r

d
t

g
= . Just as the suggestion of the three lines in Figure 6(a), the terminal position of the bubble with 

different Mo values is almost the same, however, the smaller the Mo is, the bigger the acceleration is. 

Figure 5(b) shows that when the bubble moves close to the spherical particle, the pressure of the node 

(55,55,150) increases rapidly. When the bubble position tends to be stable, the pressure gradually decreases, 

but at the jet stage, it decreases rapidly. Finishing the jet process, a bubble ring is formed and the pressure 

calls back. As Mo decreases, the response process goes more quickly. 
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Figure 7 – Histories of the pressure at the node (55,55,150) with different values  

that the bubble biases the axis of the particle 

Figure 7 shows the histories of the pressure at that node with different values that the bubble biases 

the axis of the particle keeping 15.984Eo =  and 0.75φτ = . The similar phenomenon that a rapid drop 

procedure sticks with a rapid rise procedure appears. However, the rapid drop procedure is not caused 

by the jet process, but the bubble moving away from the particle. Because an interesting phenomenon 

that bubble rises from the side of the particle in stand of becoming a bubble ring turns up when the 

bubble is not coaxial with the particle. The more the offset is, the smaller the peak value of pressure 

will be. 

3.3 Influence of Relative Size 

The effects of the relative size β  ( /p bR Rβ = ， pR  is the radius of the particle，and bR  is the radius 

of the bubble) will be studied in the next. Keeping the fluid properties, the interface thickness and the 

surface tension fixed, the relative size is chosen as 0.8β = , 1.0, and 1.2 with bR  = 20. 
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Figure 8 – At t = 8000, bubble deformation and velocity distribution for (a) 0.8β = ; (b) 1.0β = ; 

(c) 1.2β =  

   

Figure 9 – At t = 8000, bubble deformation and pressure distribution for (a) 0.8β = ; (b) 1.0β = ; 

(c) 1.2β =  

Figures 8 and 9 show the clipping views of the interaction process coupling with the velocity vector 

field and the pressure field at the key point, respectively. Compared with the other two cases, a bubble ring 

already generated at t = 8000 for 0.8β = . while the other two cases are still in the jet stage for 1.0β = ，
and the extrusion stage for 1.2β = . By comparative analysis, it can be found that the fastest-coupling 

velocity for 0.8β = . The it can be concluded that both decreasing Mo and decreasing particle size can 

improve the interaction process and speed up forming a bubble ring. It can also be found that great 

differences in the property of velocity and pressure around the bubble exist. During the interaction, the 

velocity of the upper surface of the bubble is faster the that of the bottom, and the pressure on the surface 

adjacent to the solid wall is higher than the other parts due to the extrusion process.  
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Figure 10 – With different relative size, 0.8,1.0,1.2β = , (a) histories of the bubble center position; (b) 

histories of the pressure at nodes (55,55,154)，(55,55,150), (55,55,146) 

The histories of the bubble center position and the pressure at nodes (55,55,154), (55,55,150), 

(55,55,146) are shown in Figure 10. The nodes detecting the pressure are chosen according to the 

particle size that are the nearest fluid node adjacent to the solid wall. Figure 10(a) shows that the trend 

is merely influenced by the relative size, but the terminal position is affected due to the position of the 

solid wall. Figure 10(b) shows that the smaller the particle is , the larger the maximum pressure will be. 
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The rapid drop and correction process induced by the jet is also suggested in Figure 10(b). 

4. CONCLUSION 

To investigate the interaction between bubbles and its surrounding particles in the gas-liquid-solid 

mixture, a three-dimensional model of bubble interaction with spherical particle is developed using the 

lattice Boltzmann method. Both the fluid property, relative position and the relative size effecting the 

interaction process are studied. The following conclusions are drawn: 

(1) When the bubble is coaxial with the particle, a spherical bubble will translate into a bubble ring during 

the interaction, but the bubble will rise from the side of the particle when it is not coaxial with the particle. 

(2) A pressure evolution that the pressure firstly increases rapidly, and then decreases via the slow stage and 

the rapid stage with a correction process at last is observed for the fluid node under the particle. As Mo 

decreases, the response process goes more quickly. 

(3) When the bubble is not coaxial the particle, the more the offset is, the smaller the peak value of pressure 

for the fluid node under the particle will be. 

(4) When the bubble is coaxial with the particle, the smaller the particle is , the larger the maximum 

pressure will be. 
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