
 

Inter-noise 2014  Page 1 of 10 

Analysis of acoustic radiation of a ring-stiffened cylindrical shell in 

underwater based on precise integration transfer matrix method  

Fuzhen Pang
12

; Chuang Wu
1
; Qingshan Wang

3
; Hongbao Song

1 

1 
College of Shipbuilding Engineering, Harbin Engineering UniversityNo. 145 Nantong Street, Harbin, 

Heilongjiang, 150001, P. R. China  

2 
Naval Academy of Armament, Beijing,100161, P. R. China 

3 
College of Mechanical and Electrical Engineering, Harbin Engineering University 

No. 145 Nantong Street, Harbin, Heilongjiang, 150001, P. R. China      

ABSTRACT 

Based on transfer matrix theory and inhomogeneous precise integration method, precise integration transfer 

matrix method (PITMM) is developed to study the dynamic response of stiffened cylindrical shell. Firstly, 

field transfer matrix and point transfer matrix for stiffened cylindrical shell are obtained based on Flügge 

theory, transfer matrix theory and Helmholtz equation. The effect of generalized acoustic pressure excitation 

is handled with the inhomogeneous precise integration method and increment-dimensional storage methods. 

According to the boundary conditions for both ends of cylindrical shell and motion continuity condition on 

the fluid-solid interaction, the coefficient of acoustic pressure is calculated. Thus, acoustic radiation of the 

stiffened cylindrical shell is determined. The accuracy of the proposed approach has been demonstrated by 

comparing the current results with those in the literature and with some experimental results. On this basis, 

the effects of boundary conditions, loss factors of structures and fluid medium on the acoustic radiation of 

stiffened cylindrical shell are discussed. It is shown that, the acoustic radiation pressure of structure is largest 

for free boundary condition, and becomes smaller in that order for simply supported and clamped boundary 

condition. With an increase of loss factors of structures, the acoustic radiation pressure monotonically 

decreases. However, the radiation pressure increases with an increase of fluid medium impedance. 
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1. INTRODUCTION 

In the engineering applications, especially in the field of modern military defense, stiffened 

cylindrical shell is basically a simplified model of many weapons and equipments, such as: torpedoes, 

missiles, submarines and so on. So the analysis acoustic coupling mechanism of stiffened cylindrical 

shell, has been a research hotspot among domestic and foreign scholars. In the numerical aspects, 

FEM,BEM,SEA have been widely application. Theoretically, numerical methods can handle any 

complex structure. But the accuracy of solution is limited by computing frequency scope. And 

numerical methods are difficult to analyze the mechanism, All these restrict the development of finite 

element technique. While the traditional analytical methods can only give a simple structure’s 

analytical solution. Therefore, semi-analytical method is now becoming an effective method in 

analyzing stiffened cylindrical shell acoustic radiation. For many of the same types of units ordered by 

the combination of a similar chain of shell structures,  the transfer matrix method is relatively simple  

method to solve dynamic problems. 

Initially H. Tottenham and K. Shimizu
[1]

first put forward the transfer function method for solving 

the free vibration of cylindrical shell. Later T. Irie
[2]

,who conducted further application,form a more 

perfect transfer matrix method,the method is successfully applied to free vibration of the structure 

such as the axial cylindrical shells with discrete spring-loaded, cone shell variable thickness and taper 

- cylinder shell etc. However, these studies are focused on studying characteristics of structural free 
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vibration. None of these studies is related to the response of structural vibration and underwater 

acoustic radiation problems. CAI Xian xin
[3] 

who absorbed the thought of T.Irie expands the state 

vector of rotary shell into the form of series in the circumferential direction by using the model of 

rotary shell structure.He derives  first-order  vibration differential equation of rotate the shell 

structure,and gives a kinds of semi-analytical solution for solving the free vibration of rotating shell. 

However, the accuracy of this method is low.And it requires relatively slight segments. CAO 

Lei
[4]

who uses Riccati transfer matrix method to analyze the ring stiffened cylindrical shell’s 

performance of underwater acoustic radiation. But he uses a piecewise interpolation theory and 

polynomial approximation to approach non-homogeneous terms in calculating the non-homogeneous 

terms of  the first-order non-homogeneous matrix differential equations. the problems such as 

inaccurate values and loss of accuracy can’t be avoided. 

In connection with the above shortcomings, this paper proposes the precise integration transfer 

matrix method. It is mainly used to solve the problem of structural vibration response and underwater 

acoustic radiation. This paper uses a more accurate approach when deal with the non-homogeneous 

terms of  first-order non-homogeneous matrix differential equations .This approach is academician 

ZHONG Wanxie’s inhomogeneous terms precise integration method
[5]

.It divides fine segment of 

cylindrical shell into precise integral step. Based on Taylor series expansion and the addition theorem 

in precise integral step, highly accurate results of inhomogeneous terms in fine segment are obtained 

through the recycling processing, numerical calculation precision is higher and more accurate. This 

method will be  discussed amply in paragraph 2.3. 

2. THEORETICAL DERIVATION 

2.1 Cylindrical shell segment field transfer matrix 

Model of this dissertation is finite stiffened cylindrical shell immersed in an infinite flow field 

medium. The assumption is that both ends of the cylindrical shell are infinite rigid baffles. The model 

is shown in Fig.1.  

For obtaining precise values, we expound the shell deformation by thin shell theory which is 

based on linear assumptions. In order to obtain precise values, relatively accurate Flügge shell 

theory
[6]

 is used in this chapter. The force balance equation is obtained by analyzing cylindrical shell 

micro-element stress. In this paper equations are based on the kinetic theory, so many terms include 

time items with the purpose of facilitate the writing and derivation. Dynamic response time 

items
i te 

is omitted in writing hereinafter. Cylindrical shell coordinates system( r ,  , x )and 

displacement positive direction are shown in Fig.2 . 

  

Figure 1. Model of stiffened cylindrical shell Figure 2. Cylindrical shell coordinates system 

On the ground of  Flügge shell theory, force balance equation of cylindrical shell is given: 
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Reference[3].By eliminating eight unknown quantities and retaining eight unknown quantities. All 

quantities become dimensionless quantities and expand to trigonometric function form  along the 

circumferential direction. Then, first-order matrix differential equation is obtained through 

complicated simplifying : 



Inter-noise 2014                                                               Page 3 of 10 

Inter-noise 2014                                                               Page 3 of 10 

 
     

( )
( ) ( ) ( ) ( )

d

d


   


  U

Z
Z F p                           (1) 

The state vector of cylindrical shell is:
T

( ) u v w M V S Nx x x x  
 
 
 

Z . ( , , )u v w  are dimensionless 

quantities of axial direction( x direction),circumferential direction(  direction)and normal 

displacement(  direction) .  is a dimensionless angle, xN is a dimensionless film force, xM is a 

dimensionless moment, ( xV ， xS )are  dimensionless Kelvin-Kirchhoff shear force and shear force; 

( )Z is the shell element’s state vector and also a function of dimensionless variables  . ( )U as the 

differential coefficient is field transfer matrix of cylindrical shell structure’s state vector, and is an 

eight-order square matrix. There are 22 non-zero elements in ( )U ,see Appendix A.. 

2.2 The point transfer matrix of ring ribs 

Due to the effect of the ring rib, cylindrical shell state vector changes in the ring rib place. Using 

continuous condition connection cylindrical shell with the ring rib and rib motion control equation 

(tensile and bending vibrations within the plane, the bending and torsional vibrations out of the 

plane),it is easy to obtain the ring rib point transfer matrix
k

R .A ring rib locates at cylindrical 

shells
k

 ,due to the presence of ring ribs,two faces internal and two faces external forces of stiffening 

rings left and right end change,and state vector of left and right end satisfy the following equation:  

( ) ( )
R L

k k k
 Z R Z  

k
R is an 8 × 8 point transfer matrix whose nonzero matrix elements are: 

1,
ii

R i  1, 2, 3, 8.  

2 2 4 2 22 2
51 3 3 4 4

=
b b b b
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      
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      

Where
1 2b P

R I I I J、 、 、 、 respectively represents the radius of the ring ribs at shaft, the inertia moment 

about longitudinal symmetry axis, the inertia moment about radial symmetry axis, the polar inertia 

moment and torsional moment; A G、 、  respectively is ring rib cross-sectional area, density, shear 

modulus. = +bR R e ,For eccentricity e , e take positive with outside rib. 

2.3 Inhomogeneous terms use of precise integration for solving dynamic response 

For non-homogeneous linear differential Eq.(1), the general solution is: 

                  ( )
0

0
( ) ( ) ( )e e d

  


   
   

U UZ Z r                         (2) 

Where    ( ) ( ) ( )   r F p ,the second term at equation’s right is the state response caused by a 

non-homogeneous terms. Solving the above equation is the first step to solve ring-stiffened cylindrical 

shell acoustic radiation meanwhile it is a very important step. For Solving e
U

,readers can refer to 

academician ZhONG Wanxie index matrix precise integration method[7]. It will not be mentioned 

here. If the non-homogeneous terms are calculated, state vector ( )Z can be calculated. 

Helmholtz equation in drain field is expressed as: 
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2 2

0 0p k p                                 (3) 

The acoustic pressure also satisfies the boundary conditions at infinity distance: 

         0lim 0
r

p
r ik p

r

 
  
 


 


     (4),         0 0x Lx

p p
x x 

 
 

 
                  (5) 

Helmholtz equation can be solved by variable separation approach, considering the Eqs.(4), (5) and 

other boundary conditions, the acoustic radiation pressure of the surrounding fluid domain can be 

expressed as: 
1

(1)

0 0 0

cos( ) sin ( )
2mn n rm

n m

p k x p H k r n



 
 
 

 

  

                       (6) 

Where   , 0,1, ...mk m L m N  , 00k c  , 0 1500 /c m s is speed of acoustic in water. 

When the argument x is a real number: 
(1)

( ) ( ) ( )n n nH x J x iY x   

When the argument x is imaginary: (1) 1 2
( ) ( ) ( )

n

n nH ix i K x


   

Corresponding to wavenumber (m, n),the monomial generalized acoustic pressure is expressed as:    

                          
( 1 )

( ) ( ) c o s ( )n r mr H k R k x 
 

It is taken into eq.(2),response terms can be obtained: 

1 1 10 0 0
( ) cos( ) cos( ) sin( ) sin( )mk m k m k me d k l e k l d k l e k l d

  
          

  

      U U Ur e e          (7) 

Where e is known item,
(1)

( ) 0 0 0 0 0 1 0 0
T

n rH k R  
 e =  , assuming i mk l 

, 

1cos( )m kk l pp = e
, 1sin( )m kk l qq = e

 ,Then:  

10 0 0
( ) Reke d e e d Im e e d

  
        
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   
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   

  

    
U U Ur pp + qq  

There is only one unknown quantity
0

e e d


  


 U in the equation. 

Where
0

( ) e e d


  


   UE ， 0 ( )
l

l e


 
.
By the addition theorem available:

 
2 2

0 0 0 0
(2 ) e e d e e d e e d e e d e e e e d

              


     
     


         

UU U U U UE

       

(8) 

The same available: 

 
2

00 (2 )= ( )     ,   
2

00 (2 )= ( )      

When the fine segment  is divided into precise integral step  ( / 2 )
M

   , M is recommended  to  

take  20. ( )E , 0 ( )  , 0 ( )  can be expanded by Taylor series: 

1

00 00 0

( )
! ! ! !( 1)

k m k m k m k m

k km m

t
dt

k m k m k m

   


    

  

 
   

U U
E                           (9) 

'

0 8 0
0

( )= = ( )
!

k k

k

A
e

k

 
 





 
U

I  (10) ， '

0 0
0

( ) 1 ( )
!

k k

k

e
k

 
   







                 (11) 

If using addition theorem directly based on Eqs.(10),(11), it will lead to loss of precision. On 

account of that 
'

0 ( )  、
'

0 ( ) is trace relative 1 and 8I . Mantissa will appear error because of computer 

rounding errors, then, lead to loss of precision. Therefore, they should be rewritten to increase the 

micro- increments 
'

0 ( ) and
'

0 ( )  : 

' ' ' '

0 0 0 0(2 ) 2 ( ) ( ) ( )        (12)，    ' ' ' '

0 0 0 0(2 ) 2 ( ) ( ) ( )                           (13) 

According to Eq.(7),obtaining:
' '

0 8 0(2 ) ( ) [1 ( )][ ( )] ( )        E E I E   

Where 1E is real component of ( )E  

' ' ' '

1 1 0 8 0 1 0 8 0 2[1 ( )][ ( )] [1 ( )] [ ( )]real imag            E E I E I E               (14) 

Where 2E is imaginary part of ( )E  

' ' ' '

2 2 0 8 0 1 0 8 0 2[1 ( )][ ( )] [1 ( )][ ( )]imag real           E E I E I E                 (15) 

Then run the program according to the following algorithm: 
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For (iter=0; iter<M; iter++) 

Run eqs (12),(13), (14) ,(15). 

Obtaining 
' '

0 0 1 2( ) ( )    、、 、E E in the fine segment  after M  assignment. 

'

0 8 0( ) ( )    I  ,
'

0 0( ) 1 ( )        , 1 0
Re e e d


  

 
 
 
 


 

UE  , 2 0
Im e e d


  

 
 
 
 


 

UE  

Inhomogeneous terms 10
( )ke d


   



  U r can be expressed as: 

1 1 20
( ) = +ke d


   



  U r E pp E qq  

So far, we have obtained precise results of non-homogeneous terms by using the addition theorem in 

precise integral step. Meanwhile the Eq.(2) under the effect of acoustic pressure can be written in 

matrix form: 

   01( ) ( ) ( )( ) Re ( ) ( )

1 1 10 1

k k k
k

Im    
      
      
      
       

   
 

Z Z ZE pp+ E qq
M


            (16) 

Concentrated force’s impacts on cylindrical shell are similar to ring rib’s. It only changes the 

state vector where concentrated force impacts, the left and right ends of concentrated force satisfy 

the following equation: 

( ) ( ) ( )

0 11 1 1

R L L
kk k k

k
  

      
      
      
           

 
I FZ Z Z

IF

                         

(17) 

1
[0 0 0 0 0 0 0]

T
nk RK f


F =

 ,  kIF represents concentration point transfer matrix .
 

2.4 The Solution of Stiffened cylindrical shell’s acoustic radiation 

2.4.1 State vector under concentrated force 

For the structural segment k ~ 1k  ,the left state vector  kZ  transmits to  1k Z through field 

transfer matrix 0 ( )l .The concentration or stiffener is present at a section 1k  .The left state 

vector  1
L
k Z transmits to the right state vector  1

R
k Z through 1kIF or 1kR .Repeating the above 

process, then the relationship of the left state vector  0
LZ and the right state vector  R

NZ  at end of 

ring stiffened cylindrical shell satisfy: 

   0
1

N
R L
N kP kFk
 


 Z C C Z  

According to the boundary conditions at both ends of the cylindrical shell , the state vector of both 

ends can be calculated. Then substituted into the above equation, the state vector at the nodes of any 

segment can be obtained. We obtain the radial displacement ( )
n

fw x under each circumferential wave 

number n and the concentrated force eventually. 

2.4.2 State vector under concentrated force 

For monomial acoustic pressure 
(1)

( ) cos( )n r mH k R k x  under the wavenumber (m, n),the state vector 

under monomial acoustic pressure can be solved by using PITMM. In this way, field transfer matrix is 

obtained. Using the above method, the total transfer matrix can be obtained: 

   0
1

N
R L
N kP kk
 


  CZ M Z  

Similarly, considering the boundary conditions at both ends, we can obtain the radial displacement 

( )
n

mw x under the corresponding (m, n) order wave number and the acoustic pressure by using PITMM. 

2.4.3 The solution of acoustic radiation 
According to the linear superposition principle, the radial displacement which corresponds to 

each circumferential wavenumber n satisfies: 

0
( ) ( ) ( )

n n n
mn mf

m
w x w x p w x




                           (18) 

 

As mnp is unknown, we must firstly solve the mnp for getting ( )
n

w x . 
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According to the continuity conditions on the contact surface, the radial velocity of the fluid must  

equal to the radial velocity of structure: 
1

r R

p w
i r t 

 


 
 

mnp is solved by the Moore-Penrose generalized inverse method, detailed process: 

Define:  
(1)

2

0

( )
cos( ) ( )

nn r
jm m j m jn

H k R
U k x w x

r
 

 
 
 


 


,   1m mnn

p p ,  2

0 ( )
n

j f jn
Q w x 
 
 
 

    

Because any point on the structure satisfies interface continuity conditions, therefore we can select 
M points in the longitudinal direction of the structure. M is greater than the axial wave number m, 

meanwhile it also satisfies
1

2M 


  .Taking M points into Eq.(19),and then bring Eqs.(6) (18) into 

Eq.(19). Then it can be transformed into a equation which can solve the acoustic pressure 

coefficients under each wave number corresponding: 
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Obviously there is only one unknown column vector  1m n
p ,so it can be solved. 
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n n n

U p Q 
                                     (20) 

Dealing with U 
  by the singular value decomposition, we obtain: [ ][ ][ ]

T
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Dealing with U 
  by Moore-Penrose inverse, we obtain:
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Substitution it into Eq.(20),we obtain :    1
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The radiated acoustic pressure in the flow field can be obtained by Substitution coefficient 

matrix  p into Eq.(6).According to radiated acoustic pressure, We have obtained radiation 

corresponding SPL: 020 lg( )pL p p .Reference acoustic pressure is: 0 1p Pa .The radial displacement 

of each point on the cylindrical shell is: 

                        ( , ) cos( ) sin( )
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The radial quadratic velocity on the surface of structure satisfies: 
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3. NUMERICAL RESULTS 

3.1 Introduction about verified model 

Compared with data of reference [8], [9], [4],to Verify the accuracy of the method PITMM.the 

results are shown in Table 1, Table 2. 

The parameter in reference[8]:young's modulus of the     

material
11

2.06 10 PaE   ,Poisson's ratio 0.3  , Fluid 

density
3

=7800kg/m ,Loss factor 0.01  . Acoustic wave 

propagation velocity 0 =1500m/c s .Cylindrical shell 

geometry parameter, Length =0.6mL ,radius =0.2mR , 

Thickness =0.003mh ,Inner rib geometry parameter 

0.002 0.003m ，the number of inner rib is 9. Radial 

excitation force acts on cylindrical shell ( ),0,L 2 R , 

force amplitude 1N . Measurement points ( ), , mL 2 2 . 

shown in Fig.3. 

The parameter in reference [9]:Parameter of material and fluid is same as reference [8]. Cylindrical 

 
Figure 3.Model test schematic diagram 
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shell geometry parameter, length =0.6mL , radius =0.175mR ，thickness =0.002mh , outer rib geometry 

parameter 0.002 0.025m ,the number of outer rib is 5. Radial excitation force acts on cylindrical shell 

( ),0,L 2 R , force amplitude 1N ,Measurement points ( ), ,1.175mL 2  . 

3.2 The contrast of calculation results 

Table1 simply-simply supported Stiffened         

cylindrical shell  SPL (db)                                                

 

 

Table2 simply-simply supported Stiffened 

cylindrical shell  SPL (db) 

Tab.1 and Tab.2 show that the result data of 

this method agrees well with test values and 

calculated values from the model of the 

reference [8], [9].Comparing with the data

of reference [4],the Result data of this method is 

closer to the test data. It also further validates the 

precise integration method of this article is exacter 

than the precise number of polynomial approximation from the reference [4] in dealing with 

inhomogeneous terms. In the paper, this method is the biggest advantage compared to the reference [4] 

method in dealing with inhomogeneous terms.                                                    

4. RESEARCH ON VIBRATION NOISE CHARACTERISTICS OF STIFFENED CY 

LINDRICAL SHELL 

To analyze some parameters of stiffened cylindrical shell influencing acoustic radiation by using 

PITMM based on the model parameters of reference [9] 

4.1 Effects of boundary conditions on the acoustic radiation of stiffened cylindrical shell 

Table3 boundary conditions have effects on the stiffened cylindrical shell SPL(db) 

Tab.3 and Fig.4 compare the two end boundary conditions on the influence SPL of stiffened 

angle

（
0
） 

f=6300Hz, 9 inner ribs 

[8] [4] 

calc 

PITMM 

calc calc test 

0 135.63 129.23 138.56 137.02 

20 131.26 127.05 135.46 134.81 

40 130.06 121.28 131.97 123.90 

60 129.43 122.91 122.40 127.20 

80 130.28 125.34 119.61 119.77 

100 118.50 127.67 119.85 128.85 

120 128.10 127.89 126.68 131.88 

140 120.27 121.79 120.16 123.85 

160 121.11 115.19 118.37 126.35 

180 127.63 117.41 125.08 127.33 

angle

（
0
） 

f=4000Hz, 5 outer ribs 

[9] [4] 

calc 

PITMM 

calc calc test 

0 129.78 129.90 125.32 127.80 

30 127.61 127.96 121.47 124.80 

60 129.03 119.44 123.81 123.07 

90 116.59 124.30 117.76 123.30 

120 128.78 130.59 126.96 127.98 

150 126.74 129.90 125.24 128.05 

180 128.18 133.96 128.34 128.19 

angle（°） 
f=4000hz 

F-F S-S C-C 

0 131.20 127.79 126.15 

30 129.88 124.80 123.31 

60 128.19 123.07 119.20 

90 124.46 123.30 118.80 

120 130.65 127.98 124.04 

150 131.94 128.05 123.96 

180 131.72 128.19 124.59 
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Fig 4.  Circumferential cylindrical shell SPL(db) 
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cylindrical shell underwater. From the free ends of the boundary conditions, simply supported, to 

rigidly fixed, the radiation acoustic pressure of structure  decreases with a fixed strengthen, This is 

because the stronger the structure is fixed at both ends to generate more difficult vibration, acoustic 

radiation pressure is the smaller. 

4.2 Effects of structural damping on the acoustic radiation of stiffened cylindrical shell 

Table4 Structural damping affects  

stiffened cylindrical shell SPL(db). 

 

 

Table 4 and figure 5 compares the structural loss 

factor on the influence SPL of stiffened cylindrical 

shell underwater. in fig.5,it satisfies that  structural radiation acoustic pressure decreases with the 

increasing of loss factor, but a few sets of data does not meet the law; Near the exciting force (
00  ), 

the influences of loss factor on  structural radiation acoustic pressure is small, away from the exciting 

force (
0180  ),the influences of loss factor on structural radiation acoustic pressure is obvious. 

4.3 Effects of the fluid medium on the acoustic radiation of stiffened cylindrical shell 

The density of water is 1000
3

kg / m , the velocity of sound is 1500m /s in the water, the impedance 

of the water is1.5 Mpa /(m s), the density of air is 1.293
3

kg / m , the velocity of sound is 340m /s  in air, 

the impedance of the air is
4

4.4 10


 Mpa /(m s). 

Table5 the fluid medium affects the  

stiffened cylindrical shell SPL(db) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

angle（°） 

f=4000hz 


=0.01 


=0.05 


=0.1 

 0 127.79 126.93 125.60 

30 124.79 124.97 125.14 

60 123.07 124.52 126.36 

90 123.30 117.84 116.26 

120 127.98 126.79 125.01 

150 128.05 128.52 128.01 

180 128.19 128.94 128.43 
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Fig 5. Circumferential cylindrical shell SPL(db) 
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Fig 6. Circumferential cylindrical shell SPL(db)  

angle（°）   

f=4000hz 

water air 

0 127.79 103.30 

30 124.79 106.81 

60 123.07 106.11 

90 123.30 105.46 

120 127.98 95.13 

150 128.05 94.89 

180 128.19 97.87 
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Table 5, Figure 6 compare the fluid medium on the influence SPL to stiffened cylindrical shell 

underwater. It can be apparently found that radiation acoustic pressure of structure in large fluid 

medium impedance (water) is smaller than in fluid medium small impedance (air).  the reason for 

this phenomenon is that acoustic waves cause the pressure variation of water medium is greater than 

air medium as the impedance of water is relatively lager than the air’s. 

4.4 Effects of The thickness on the acoustic radiation of stiffened cylindrical shell 

Measurement point (L/2,0,1.175m). 
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Fig 7. Lv comparison of stiffened cylindrical 

shell with different thickness 

Fig 8. SPL comparison of stiffened cylindrical shell 

with different thickness 

 

Fig.7 and Fig.8 compare the thickness of stiffened cylindrical shell influence on LV and SPL 
underwater. It can be seen from the figure 7 that LV peak points move backwards and the peak values 

basically remain stable with the increase of shell thickness. Outside of the peak point segment, LV of 

stiffened cylindrical shell decrease gradually with the increase of shell thickness; It can be seen from 

fig.8 that SPL peak points move backwards while peak values have the trend of gradual increase with 

the increase of the shell thickness. Outside of the peak point segment, SPL of stiffened cylindrical 

shell decrease gradually with the increase of shell thickness. 

5. CONCLUSIONS 

Papers of using the transfer matrix method to solve the problem of acoustic radiation cylindrical 

shell have been published in domestic and foreign. But this is the first time that the non-homogeneous 

terms precision integration is introduced to the transfer matrix method for solving the problem of 

acoustic radiation. And the accuracy of the method has been validated in this article. What’s more the 

method is not limited to the boundary conditions at both ends of the cylindrical shell. So, the method 

can be widely used. 

Based on the characteristics of transfer matrix method, this method can also be extended to solve 

the acoustic radiation problem about variable thickness cylindrical shell, reinforced cone shells and 

other rotating body structure. 
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