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ABSTRACT 

In this investigation, a modified Fourier solution based on the Mindlin plate theory is developed for the free 

vibration problems of orthotropic rectangular Mindlin plates subjected to general boundary supports. In this 

solution approach, regardless of the boundary conditions, the plate transverse deflection and rotation due to 

bending are invariantly expressed as a new form of trigonometric series expansions with a drastically 

improved convergence as compared with the conventional Fourier series. All the unknown coefficients are 

treated as the generalized coordinates and determined using the Raleigh-Ritz method. The change of the 

boundary conditions can be easily achieved by only varying the stiffness of the three sets of the boundary 

springs at the all boundaries of the orthotropic rectangular Mindlin plates without the need of making any 

change to the solutions. The excellent accuracy of the current result is validated by comparison with those 

obtained from other analytical approach as well as the Finite Element Method (FEM). Numerical results are 

presented to illustrate the current method is not only applied to the classical homogeneous boundary 

conditions but also other interesting and practically important boundary restraints on free vibrations of the 

orthotropic rectangular Mindlin plates with varying stiffness of boundary springs. 
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1. INTRODUCTION 

As one of the most common type of fundamental structural elements, the orthotropic plates are 

plates are widely used in various engineering such as aeronautic, automotive and unde rwater 

structures and so on. The wide use of advanced composite laminates in industrial mainly because they 

exhibit properties which are more favorable than those of single layer and isotropic ones. Also, fiber 

enforced composite materials have high strength/weight and stiffness/weight ratios, relatively low cost 

[1], corrosion resistance and longer fatigue life [2]. The orthotropic behavior arises from the use of 

materials with such constitutive relations, and many composite plates can also be modeled analytically 

as orthotropic plates [3]. The ratio of in-plane Young’s modulus to transverse shear modulus is 

relatively high for composite plates due to the great difference between elastic properties of fiber 

filament and matrix materials. This leads to using the thin plate theory, which neglects transverse shear 

deformation, is invalid for most composite plates, even those which are geometrically thin [4]. For 

dealing with complicated shear strain distribution, various shear deformation theories have been 

proposed. The Mindlin plate theory, generally referred to as the first order shear deformation theory 

and incorporated the effect of rotary inertial, is one of the most typical and used deformation theories 
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for the analysis of composite laminates [5]. 

Mindlin [6] first uncoupled the equations by expressing the two rotations (Ψx, Ψy) and the 

deflection (w) in terms of three potentials. Then Mindlin et al. [7] presented exact solutions for simply 

supported rectangular plates and studied coupling of modes for the case of one pair of parallel edges 

free and the other pair simply supported. Special attention was given to the high modes and 

frequencies of vibration which were beyond the range of applicability of the classical theory of thin 

plates. Later, Brunelle [8] and Shahrokh and Arsanjani [9] derived the exact characteristic equations 

for elastic stability and free vibration, respectively, of a rectangular Mindlin plate with two parallel 

edges simply supported and the remaining two edges subjected to a variety o f boundary conditions. 

The exact solutions for free vibrations of Mindlin plates are much more complex than those of thin 

plates. Recently, Xing and Liu [10,11] presented simplified characteristic equations, which were 

similar with those via Kirchhoff thin plate, for free vibrating Mindlin plates with any combinations of 

simply supported and clamped edges, involved free edges for plates with two simply supported 

opposite edges. However, are only available for simply supported plates so far [12]. For other c lassical 

boundary conditions, the application of an approximate method was regarded as unavoidable [13, 1, 4]. 

On this aspect, Liew et al. [14] have presented a comprehensive literature survey on the research works 

up to 1994 on vibrations of thick plates: 132 publications have been cited, attention has been mainly 

devoted to studies based on the vibration of thick laminated plates. Apparently the finite element 

technique [15] and the Rayleigh-Ritz technique [1] have been most widely used in free vibration 

analysis of orthotropic Mindlin rectangular plates. Other methods such as Galerkin technique [16], the 

superposition method [17], and the finite difference method [4] etc. have also been used to the free 

vibration analysis of orthotropic rectangular Mindlin plates. The state space concept has been used to 

develop Levy-type exact solutions for free vibration and buckling of laminated composite plates based 

on the first order and higher order theories [18, 19]. Beside the aforementioned studies on classical 

boundary conditions (namely free, simply supported and clamped), the vibration problem of 

orthotropic Mindlin rectangular plates with complicated edge supports are also considered by several 

researchers [20-24]. 

Motivated by the limitation of boundary conditions in the current studies of the vibration analysis 

of orthotropic Mindlin rectangular plates structures, in this paper, a modified Fourier solution based on 

the Mindlin plate theory is developed for the free vibration problems of orthotropic rectangula r 

Mindlin plates subjected to general boundary supports. In this solution approach, regardless of the 

boundary conditions, the plate transverse deflection and rotation due to bending are invariantly 

expressed as a new form of trigonometric series expansions with a drastically improved convergence 

as compared with the conventional Fourier series. All the unknown coefficients are treated as the 

generalized coordinates and determined using the Raleigh-Ritz method. The change of the boundary 

conditions can be easily achieved by only varying the stiffness of the three sets of the boundary springs 

at the all boundaries of the orthotropic rectangular Mindlin plates without the need of making any 

change to the solutions. The excellent accuracy of the current result is validated by comparison with 

those obtained from other analytical approach as well as the Finite Element Method (FEM). Numerical 

results are presented to illustrate the current method is not only applied to the classical homogeneous 

boundary conditions but also other interesting and practically important boundary restraints on free 

vibrations of the orthotropic rectangular Mindlin plates with varying stiffness of boundary springs.  

2. THEORETICAL FORMULATIONS 

To obtain the free vibration information of orthotropic Mindlin plate structures under general 

boundary conditions, the combination of the artificial spring technique together with Rayleigh -Ritz 

method is feasible. Consider the orthotropic plate, with the dimension of a×b, and the coordinate of 

the orthotropic Mindlin plate are depicted in Figure 1 Three groups of boundary restraining springs 

(translation, rotational and torsional springs) are arranged at the all sides of the plate to separately 

simulate the boundary force. By assigning the stiffness of the boundary springs with various values, 

it is equivalent to impose different boundary force on the mid-surface of the plate. For example, the 

clamped boundary condition can be readily obtained by setting the spring coefficients into infinity (a 

very large number in practical calculation) for the translation, rotations and torsional restraining 

springs along each edge. 
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Figure 1 – The general elastic boundary conditions of orthotropic Mindlin plate 

Based on the Mindlin plate theory, the displacements vectors with three directions are: 

 , , , ( , , )xu x y z t z x y t                           (1) 

 , , , ( , , )yv x y z t z x y t                           (2) 

 , , , ( , , )w x y z t w x y t                            (3) 

Where u, v and w are represents the x, y and z direction displacement function, the ψx and ψy are the 

slop due to bending along in the respective planes. The relationship w with the slop  ψx and ψy are ψx 

=﹣dw/dx, ψy =﹣dw/dx. 

For the orthotropic Mindlin plate, making use of the strain–stress relationship defined in 

elasticity theory, the normal, shear strains and transverse shear strains can be expressed as follows:  
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where εxx, εyy and γxy are the normal and shear strains in the x, y, z coordinate system. The transverse shear 

strains γxz and γyz are constant through the thickness. The σxx and σyy are the normal stresses in the x, y 

direction, τxz, τyz and τxy are shear stresses in the the x, y, z coordinate system. Es and μs (s=x or y) are the 

Young's modulus and Poisson's ration in two different directions of the orthotropic rectangular plate; κ is 

the shear correction factor to account for the fact. 

In terms of transverse displacements and slope, the bending and twisting moments, and the transverse 

shearing forces in plates can be expressed as: 
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are the bending and shear rigidities, respectively. In view of the Betti Principle μxEx = μyEy, therefore, 

D12=D21. The above bending and shear rigidities are given for one layer. The formulations of rigidities of 

laminates can be found in text books or research papers, for example, [1].  

The boundary conditions for a general supported orthotropic Mindlin plate can be expressed as the 

following forms based on the force equilibrium relationship on the four sides: 

on x=0，                      0 0 0, ,x x x x xx yx y xyk w Q K M K M                      (8a) 

on x=a，                      , ,xa x xa x xx yxa y xyk w Q K M K M                      (8b) 

on y=0，                      0 0 0, ,y y y y yy xy x xyk w Q K M K M                      (8c) 

on y=b，                      , ,yb y yb y yy xyb x xyk w Q K M K M                      (8d) 

where kx0 and kxa (ky0 and kyb) are linear spring constants, Kx0 and Kx0 (Ky0 and Kyb) are the rotational spring 

constants, and Kyx0 and Kyx0 (Kxy0 and Kxyb) are the torsional spring constants at x=0 and a (y=0 and b), 

respectively. Therefore, arbitrary boundary conditions of the plate can be generated by assigning the linear 

springs、rotational springs and torsional springs at proper stiffnesses. For instance, a clamped boundary (C) 

is achieved by simply setting the stiffnesses of the entire springs equal to infinite (which is represented by a 

very large number, 10
14

). Inversely, a free boundary (F) is gained by setting the stiffnesses of the entire 

springs equal to zero.  

Thus the total potential energy of the spring restrained plate which is composed of two parts, namely the 

strain energy of the orthotropic Mindlin plates and the potential energy stored in the boundary springs, can 

be expressed as: 
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     (9) 

As the springs are considered with no mass while retaining certain stiffness, the total kinetic energy of 

the orthotropic Mindlin plates is : 
2
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In view of satisfying arbitrarily supported boundary conditions of the orthotropic Mindlin plates, the 

admissible functions expressed in a new form of trigonometric series expansions are introduced to remove 

the potential discontinuities with the functions and their derivatives. Thus, the orthotropic Mindlin plates 

displacements and rotation are expressed as:  
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where Amn, Bmn, Cmn denotes the series expansion coefficients, and 
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The basis function ( )n y  in the y-direction is also given by equation (13) except for /n n b  . 

Mathematically, the series in the form of equations (11)-(13) are able to expand and uniformly converge to 

any function. Once the form of solution has been established, the remaining task is to find a suitable set of 

expansion coefficients that will ensure the series, as a whole, satisfies both the governing equations and the 

boundary conditions in some way. A solution can be obtained either in strong form by letting the series 

satisfy the relevant equations exactly on a point-wise basis, or in weak form by solving the series 

coefficients approximately using, for instance, the Rayleigh–Ritz technique. The weak form of solution will 
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be sought here since it will be more attractive in modeling complex structures. 

The Lagrangian for the orthotropic Mindlin plates can be eventually expressed as: 

L T U                                (15) 

Then, the Lagrangian expression is minimized by taking its derivatives with respect to these 

coefficients: 

0,
L







{ , , }mn mn mnA B C                        (16) 

Since the displacements and rotation components of the plate are chose as M and N to obtain the results 

with acceptable accuracy, a total of 3∗(M+1)∗(N+1)+6∗(M+N+2) equations are obtained.  
They can be summed up in a matrix form:  

 2 K M E 0                              (17) 

The unknown coefficients in the displacement expressions can be expressed in the vector form as E. 
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In Eq.(17), the K is the stiffness matrix for the plate, and the M is the mass matrix. They can be 

expressed separately as: 
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Obviously, the natural frequencies and eigenvectors can now be readily obtained by solving a 

standard matrix eigenproblem. Since the components of each eigenvector are actually the expansion 

coefficients of the modified Fourier series, the corresponding mode shape can be d irectly determined 

from Eq. (13). In the other word, once the coefficient eigenvector E is determined for a given 

frequency, the displacement functions of the plate can be determined by substituting the coefficients 

into the Eq. (13). When the forced vibration is involved, by adding the work done by external force in 

the Lagrangian energy function and summing the loading vector F on the right side of Eq. (17), thus, 

the characteristic equation for the forced vibration of the moderately thick rectangular pla tes is readily 

obtained. 

3. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, a systematic comparison between the current solutions and theoretical results published 

by other researchers or finite element method (FEM) results is carried out to validate the excellent accuracy, 

reliability and feasibility of the modified Fourier method. In the following calculation, μy=0.25, while μx 

can be immediately evaluated through the relationship of μxEx=μyEy. First, a S-S-S-S boundary can be 

considered as a special case when the stiffness constants for the rotational and torsional boundary springs 

become infinitely large (which is represented by a very large number, 10
14

, in actual calculations) and the 

translation boundary spring become zeros. As mentioned earlier, the series expansions, Eqs. (11)-(13), will 

have to be truncated in numerical calculations. To examine the convergence of the solution, Table 1 

compares the first eight frequency parameters Ω=(ωa
2
/𝜋2

)(ρh/D22)
1/2

 which are derived by using different 

numbers of term (represented by M and N) in the series expansions with a classical full simply-support 

boundary and different aspect ratio b/a. The Table shows the proposed method has fast convergence 

behavior. The maximum discrepancy in the worst case between the 5×5 truncated configuration and the 

10×10 one is less than 0.57%. It is also shown that the results converge at M=N=15 for the given five-digit 

precision. Therefore, in the following calculations, all the Fourier series are truncated in into M=N=15. 

Table 1 – Convergence and accuracy of the Frequency parameter Ω= (ωa
2
/𝜋2

) (ρh/D22)
1/2

 for full 

simply-support orthotropic Mindlin rectangular plates with different aspect ratios b/a. 

a/b M=N 
Model sequence 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

0.5 5 13.3708 14.1679 16.1199 19.6214 24.4594 29.6808 30.0957 30.2710 
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10 13.3422 14.1011 16.0830 19.5737 24.3366 29.6808 30.0149 30.0957 

12 13.3308 14.0879 16.0828 19.5725 24.3302 29.6808 29.9961 30.0957 

15 13.3308 14.0879 16.0827 19.5719 24.3301 29.6808 29.9882 30.0957 

Ref.[21] 13.3309 14.0880 16.0827 19.5717 24.3288 29.6810 ----- ----- 

1 

5 5.16612 6.64529 10.0158 13.3708 14.1372 14.8897 16.1199 19.6214 

10 5.14388 6.62718 9.98902 13.3422 14.0920 14.8268 16.0831 19.5738 

12 5.14214 6.62529 9.98850 13.3310 14.0881 14.8245 16.0828 19.5725 

15 5.14212 6.62529 9.98848 13.3308 14.0880 14.8243 16.0828 19.5719 

Ref.[21] 5.14212 6.62529 9.98836 13.3309 14.0880 14.8241 16.0827 19.5717 

Now, let us turn our attention to the free vibration analysis of orthotropic Mindlin plates with the 

uniform boundary conditions. The natural frequency for fully simply-support orthotropic Mindlin 

rectangular plate is recalculated and the results are compared with those obtained in Ref[21]. Tabulated in 

Tables 2-4 are the first six frequency Ω=(ωa
2
/𝜋2

)(ρh/D22)
1/2

 for the orthotropic Mindlin plate with different 

boundary conditions, various aspect ratio and thickness, in which the stiffness ratio Ex/Ey = 40 and the shear 

parameter is defined as Gxy=Gzx=3Ey/5. The first six mode shapes of orthotropic Mindlin rectangular plates 

with S-S-S-S boundary conditions, a/b=0.5 and h/b=0.1 is shown in Fig.2. It can be seen that current results 

agree well with those obtained in Ref [21].  
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Figure 2 – The first six mode shapes of S-S-S-S orthotropic Mindlin plates  

Table 2 – The first six Frequency parameter Ω= (ωa
2
/𝜋2

) (ρh/D22)
1/2 

for orthotropic Mindlin rectangular 

plates with S-C-S-C boundary condition, different aspect ratios a/b and thickness. 

a/b h/b 
Model sequence 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0.5 

0.05 
19.8766 21.1325 23.9389 28.6594 35.2450 43.4135 

19.8765
a
 21.1322 23.9370 28.6552 35.2345 43.3955 

0.20 
7.68757 8.74772 10.6647 13.2021 15.4630 16.0547 

7.68768
a
 8.74780 10.6647 13.2021 15.4633 16.0549 

2 0.05 2.86663 6.48226 6.48544 9.00855 11.9607 12.5333 
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2.86654
a
 6.48179 6.48536 9.00806 11.9588 12.5331 

0.20 
2.31791 3.87040 4.67706 5.64948 5.75272 7.09121 

2.31791
a
 3.87040 4.67707 5.64949 5.75271 7.09120 

a 
Results in parentheses are taken from Ref[21] 

Thus far, the entire examples are confined to the classical boundary conditions and their combinations 

on the four edges. In the next example, we will account for the free vibration of orthotropic Mindlin plates 

with elastic edge supports. The model considered is a C-E1-C-E1 orthotropic plate elastically restrained at 

y=0 and y=b in the rotational direction; that is Ky0=Kyb=K, and all the other restraining springs are set to 

have an infinite stiffness (namely, represented by 10
14

 in numerical calculation). The first six frequencies 

Ω=(ωa2
/𝜋2

)(ρh/D22)
1/2 

 are given in Table 5 for several different restraining coefficient values. Since 

there is little published data for the free vibration of orthotropic Mindlin plate with elastic boundary 

conditions, the FEA results calculated using ABAQUS are also listed here as a reference. It can be clearly 

seen that the comparison is extremely good, which implies that the current method is able to make correct 

predictions for the transverse modal characteristics of orthotropic Mindlin plate with not only classical 

boundary conditions but also elastic edge restraints.  

Table 3 – The first six Frequency parameter Ω= (ωa
2
/𝜋2

) (ρh/D22)
1/2 

for orthotropic Mindlin 

rectangular plates with S-C-S-F boundary condition, different aspect ratios a/b and thickness. 

a/b h/b 
Model sequence 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0.5 

0.05 
19.6085 20.0954 21.4783 24.3652 29.1366 35.7661 

19.6084
a
 20.0956 21.4787 24.3656 29.1366 35.7666 

0.20 
7.42780 7.77757 8.92495 10.9484 13.5893 15.3242 

7.42788
a
 7.77759 8.92494 10.9483 13.5891 15.3241 

2 

0.05 
1.66014 3.02462 5.92273 6.62654 6.74465 9.32276 

1.66010
a
 3.02461 5.92275 6.62651 6.74460 9.32273 

0.20 
1.31655

a
 2.42304 3.34647 3.98179 4.90722 5.40681 

1.31658
a
 2.42302 3.34646 3.98173 4.90728 5.40686 

a 
Results in parentheses are taken from Ref[21] 

Table 4 – The first six Frequency parameter Ω= (ωa
2
/𝜋2

) (ρh/D22)
1/2 

for orthotropic Mindlin 

rectangular plates with S-F-S-F boundary condition, different aspect ratios a/b and thickness. 

a/b h/b 
Model sequence 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0.5 

0.05 
19.5515 19.7160 20.327 21.8168 24.7885 29.6114 

19.5579
a
 19.7126 20.3224 21.8161 24.7848 29.6133 

0.20 
7.39972 7.46765 7.87991 9.10097 11.2570 13.9837 

7.39732
a
 7.46606 7.87859 9.10808 11.2555 13.9843 

2 

0.05 
1.54958 1.74568 3.19566 5.84364 6.04243 6.76115 

1.54794
a
 1.74995 3.19852 5.84845 6.04228 6.76514 

0.20 
1.22817 1.35760 2.58215 3.29680 3.39526 4.12341 

1.22206 1.35526 2.58500 3.29642 3.39040 4.12109 

a 
Results in parentheses are taken from Ref[21] 
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Table 5 – The first six frequencies Ω=(ωa
2
/𝜋2

)(ρh/D22)
1/2 

 for orthotropic Mindlin plates with several 

different restraining coefficient values (a/b=2，h/b=0.2).  

Kr(Nm/rad) 
Model sequence 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 

0 
1.9878 3.6554 3.8149 4.9638 5.5888 6.5512 

1.9877
a
 3.6558 3.8155 4.9639 5.5890 6.5516 

10
4
 

1.9880 3.6555 3.8153 4.9640 5.5889 6.5514 

1.9882
a
 3.6557 3.8157 4.9641 5.5891 6.5517 

10
6
 

2.0119 3.6681 3.8487 4.9891 5.5968 6.5699 

2.0122
a
 3.6682 3.8489 4.9894 5.5966 6.5702 

10
8
 

2.4617 3.9260 4.5690 5.5505 5.7657 6.9979 

2.4620
a
 3.9266 4.6594 5.5504 5.7660 6.9982 

10
10

 
2.5699 3.9940 4.7709 5.7150 5.8118 7.1275 

2.5701
a
 3.9945 4.7712 5.7155 5.8121 7.1281 

10
12

 
2.5712 3.9949 4.7734 5.7171 5.8124 7.1292 

2.5716
a
 3.9954 4.7738 5.7173 5.8128 7.1296 

10
14

 
2.5712 3.9949 4.7735 5.7171 5.8124 7.1292 

2.5714
a
 3.9951 4.7735 5.7173 5.8128 7.1296 

a 
Results in parentheses are calculated by using ABAQUS 

4. CONCLUSIONS 

In this paper, a modified Fourier method has been presented to study the free vibration behaviors of 

orthotropic rectangular Mindlin plates with arbitrary boundary conditions. The first-order shear 

deformation plate theory is adopted to formulate the theoretical model. The displacements and rotation 

components of the plate, regardless of boundary conditions, are invariantly expressed as a new form of 

trigonometric series expansions with a drastically improved convergence as compared with the 

conventional Fourier series to ensure and accelerate the convergence of the solution. At each edge of 

the plate, the general restraint condition are implemented by introducing one group of linear springs 

and two groups of rotational springs, which are continuously distributed and determined by the 

stiffnesses of these springs. Instead of seeking a solution in strong forms in the previous studies, all the 

Fourier coefficients will be treated equally and independently as the generalized coordinates and 

solved directly from the Rayleigh–Ritz technique. The change of the boundary conditions can be easily 

achieved by only varying the stiffness of the three sets of boundary springs along all edges of the 

rectangular plates without involving any change to the solution procedure. The convergence of the 

present solution is examined and the excellent accuracy is validated by comparison with existing 

results published in the literature and FEM data. Excellent agreements are obtained from these 

comparisons. Numerical results are presented to illustrate the current method is not only applied to the 

classical homogeneous boundary conditions but also other interesting and practically important 

boundary restraints on free vibrations of the orthotropic rectangular Mindlin plates with varying 

stiffness of boundary springs. 
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