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ABSTRACT

The sound emission of thin-walled radiating components is a common objective of structural optimisation.
Acoustic measures are not implemented in common FE-codes. Thus, different velocitiy based measures will
be compared: the kinetic energy, the equivalent radiated power (ERP) and the lumped parameter model (LPM).
The most common approach - the ERP - is based on the sound intensity in normal direction and the sound
pressure on the radiating surface. Assuming a unit radiation efficiency all-over the surface and neglecting local
effects, this is a common approach for an upper bound of structure borne noise. Therein, the sound power
finally results from the squared velocity integrated over the radiating surface and the constant fluid impedance.
As ERP usually requires extra post processing to consider the velocity in normal surface direction, the kinetic
energy is essential in common FEA results including all velocity components apart from the normal direction,
too. Thus, it is less accurate but maybe usable for optimisation abilities. In contrast, LPM is a simplification of
the Rayleigh-integral and thus gives quite accurate results but requires significant higher computational costs
than ERP. Possibilities and limits of estimating the emitted sound power by these three methods will be shown.

Keywords: sound radiation, finite element method I-INCE Classification: 23.1; 75.3

1. INTRODUCTION
Especially light and stiff thin-walled structures tend to be sensitive for structure borne sound. Thus,

the sound radiation behaviour is a common optimisation criterion within the design and development. The
optimisation procedure relates e.g. on the adjustable material behaviour of fibre reinforced plastics (e.g.
stiffness and damping) (1). Sensitive parameters are fibre volume content, fibre orientation as well as stacking
sequence resulting in non-linear dependencies (2). Either genetic or gradient based optimisations require
numerous finite-element simulations. So there is a need for efficient numerical measures of structure borne
sound as objective function of such processes.

Therefore, the radiated sound power is commonly used to express the behaviour of radiating surfaces,
componentes and machnies and is formulated as the integral of the intensity over the surrounding and
radiating surface. Exact calculations of the sound power are limited to a few academic cases. Thus, numerical
approximation methods are commonly used but computationally expensive as fluid-sructure-interaction has to
be solved in one or both directions.

The boundary element method (BEM) including fast-multipole techniques for large-scale problems became
a very popular approach but is limited for a large frequency range or modified structures within optimisation
loops (e. g. (3)).

Simplified methods are known and based on some assumptions. For hard reflecting surfaces such as stiff
thin-walled structures, particle velocity and structure normal velocity are identical. Moreover, an evaluation of
the sound pressure on the structure’s surface is needed.

This paper compares three different approaches of sound power and the kinetic enery. Namely, there is the
equivalent radiated sound power (ERP), the volume veloctiy (PVV) and the so called lumped parameter model
(LPM) comparable to the Direct FEM.
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2. ENERGY AND POWER ESTIMATIONS
2.1 Kinetic Energy

Within steady state finite element simulations, the energy balance consisting of different elastic and
dissipating components is estimated implicitly. Therein, the kinetic energy of the whole system or several
components is given by the integral over the volume V

Wkin =
∫

V

1
2

ρs vvvvvvT dV (1)

with the density of the solid surface ρs and the surface velocity vvv. According to common standards in acoustics
the energy level

LW = 10 lg
(

Wkin

W0

)
dB (2)

is referred to a level of W0 = 10−12J. The use of global quantaties, e.g. potential and kinetic energy, to estimate
the acoustic behaviour is suggested by (4).

2.2 Equivalent Radiated Power
In contrast, the radiation behaviour of vibrating components is often estimated by the radiated sound power

P representing the integral of sound intensity I in normal direction over the closed surfaces Γ circumscribing
the radiating object (5).

P =
∫
~I ·~n dΓ with ~I =

1
2

ℜ(p~v) (3)

Regarding to the velocity normal to the surface vn = ~v~n imported from dynamic analysis, (5) compares
estimates for the sound pressure analysing acoustic fields with numerical methods. Therein, the equivalent
radiated power represents a simple, popular and efficient approach for the sound pressure in the local relation

ppp≈ ρ f c f vvv (4)

with the fluid’s density ρ f as well as it’s speed of sound c f . The relation between particle velocity and sound
pressure is reduced to the fluid’s characteristic impedance.

Z0 = ρ f c f (5)

The approximation is typical in far fields and high frequencies and results in the sound power as an integral

PERP =
1
2

ρ f c f

∫
|v(x)|2 dΓ(x) (6)

or discretised formulation for Ne piecewise constant elements with an area Aµ

PERP =
1
2

ρ f c f

Ne

∑
µ=1

Aµ vµ v∗µ (7)

This formulation neglects local effects such as interaction between sources assuming the same radiation
efficiency σ = 1 for all elemental sources. Usually overestimating the radiation, it gives a good impression of
an upper bound for convex rigid bodies and high frequencies.

2.3 Lumped Parameter Modell
For more accurate results the (5) mentioned the lumped parameter model (LPM) as well as the boundary

element method (BEM) . The lumped parameter model by KOOPMANN and FAHNLINE (4, 6, 7) is based on a
simplification of the RAYLEIGH-integral including a TAYLOR series for the GREEN’s function as a multipole
expansion. This yields to a formulation for a source at xµ and a reciever at yν .

PLPM =−1
2

k ρ f c f

Ne

∑
µ=1

Ne

∑
ν=1

Sµ Sν ℑ
{

Gµν

}
ℜ
{

vµ v∗ν
}

with ℑ
{

Gµν

}
=−sin(k|x− y|)

2π|x− y|
(8)

The imaginary part of the GREEN’s function weights the interacting sources. The double summation will be
computationally more expensive than ERP but much more efficant than fast multipole BEM. LPM predictions
are exact for dipole modes. Besides, the accuracy is dependent on the mesh refinement as well as the compliance
with the assumptions of the RAYLEIGH-integral but gernerally gives appropriate results in the low and mid
frequency range.
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2.4 Volume Velocity
The volume velocity u is an integral of the particle velocity on the ratating surface (4).

u =
∫

vdΓ =
Ne

∑
ν=1

vµ Sµ (9)

The derived radiatied sound power PVV

PVV =
k2ρ f c f

4π
u u∗ =

k2ρ f c f

4π

Ne

∑
µ=1

Ne

∑
ν=1

Sµ Sν ℜ
{

vµ v∗ν
}

(10)

is understood as a reduction of the LPM. It includes local antiphase vibration such as dipole effects but
only requires a single sum (5). In this case all interactions have a constant freqeuency dependet radiation
efficiency.Thus, PVV provides good results for the average power in the lower frequency range but is not
sensitive to mesh refinement.

3. IMPLEMENTATION
Based on steady state numerical models wirh harmonic force excitation, all given sound power estimations

have been determined in a post-processing script. Numerical simulations have been done in ABQUS 6.13 and
thus the script is a python-algorithm.

The implementation of all previously named sound power estimates is based on piecewise constant elements
and follows (5).

P =
Ne

∑
µ=1

Ne

∑
ν=1

Pµν =
Ne

∑
µ=1

Pµµ +2
Ne−1

∑
µ=1

Ne

∑
ν=µ+1

Pµν (11)

The sound power portions Pµν are understood as a partial sound power of all Ne constant elements acting as a
monopole soure. In detail, Pµµ represents the independent source distributions whereas Pµν (µ 6= ν) considers
the interaction between these sources.

The interaction matrix is symertic and its elements can be determined by

Pµν = Pνµ =
1
2

ρ f c f Sµ σµν ℜ
{

vµ v∗ν
}

(12)

with the dimensionless radiation efficiency σµν . For the different sound power modells σµν acts as

σµν = δµν for ERP, (13)

σµν =
k2 Sν

2 π

sin(k Rµν)

k Rµν

for LPM, (14)

σµν =
k2 Sν

2 π
for PVV. (15)

As mentioned, the numerical estimations are of different computational efforts. ERP and PVV sums are of
order Ne whereas LPM requires N2

e steps. In the given implementation, reading the nodal velocity fields for all
frequency points from the output database took most of the time of the whole post-processing. Array functions
in Python are such efficient, that the order of summation did not effect the total time noticeably.

4. MODELLING AND RESULTS OF TEST CASES
For comparative studies of the energy and sound power estimates, academic cases such as a free-free-plate

(FFFF) and a clamped plate (CCCC) as well as an oil pan have been used. The material has been assumed to
be linear elastic steel with a viscous damping ratio η without frequency dependency. All parameters are given
in table 1.

Table 1 – Material properties of steel

elastic parameters damping
E/MPa ν ρ/g/cm3 η/%
210000 0.30 7.80 0.045
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4.1 Rectangular Plates
First, the estimations have been tested on a rectangular plate of 250 x 200 2 mm with a harmonic excitation

of 1 N in a frequency band from 10 Hz to 1000 Hz. The mesh consits of quadratic shell elements with
2mm mesh size. The simulations in the frequency domain are based on a modal superposition. In favour, the
FFFF-plate shows 13 resonaces within that range starting at 127 Hz. Only three modes above 378 Hz are
determined for the CCCC-plate.

The results in figure 1 show very similar resonances for Wkin and PERP. Resonance heights are generally
decreasing over frequency and damping. The absolute error of Wkin and PERP is constantly 13 dB over the whole
bandwidth. PVV and LPM differ slightly between the modes but otherwise are of very similar characteristics.
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Figure 1 – plate results for FFFF and CCCC boundary conditions: kinetic energy and power estimates

Assuming the LPM beeing the most accurate estimation, the absolute errors related to the LPM are shown
in figure 2. It shows the correlation of the ERP towards LPM/PVV results with increasing frequency but
despite the singularities between the modes. In contrast, the slight difference of PVV and LPM increases over
frequency and reaches less than 2.5 dB at 1000 Hz.
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Figure 2 – Absolute error of the different estimates realted on th LPM results: plate with FFFF and CCCC
boundary conditions

4.2 Oil pan
As a next step, a thin-walled formed structure of the same material has been analysed. The outer dimensions

of the oil pan shape shown in figure 3 are app. 250 x 210 x 100 mm. Related to the figure, the part has been
excited vertically on the top surface. The part is fixed with displacment boundary conditions along the lower
edge (red). Wall thickness of the part is app. 1.7 mm and again the mesh has been developed with quadratic
shell elements of 2 mm edge length. Thus, the model consits of about 8500 elements and 25000 nodes. The
frequency range was increased up to 10 kHz for this model.

Figure 3 – Demonstrator part: oil pan
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Both, kinetic energy and sound power estimates show a strong modal behaviour (figure 4). Again, the ERP
and kinetic energy differ almost constantly 13 dB in the whole frequency range. Peaks are generally higher and
more sharp in the energy level with a decreasing difference over the frequency. Moreover, the absolte errors
for ERP and kinetic energy tend to constant values of 0 dB and 13 db above 2 kHz whereas the difference
between PVV and LPM increases over frequency.
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Figure 4 – Oil pan results: kinetic energy vs. sound power estimates - levels and absolute error values
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5. SUMMARY AND OUTLOOK
In summary, kinetic energy and equivalent radiated sound power levels show an almost similar behaviour

in the determined frequency range. The modal characteristic for lower frequencies and the decreasing dynamic
of the singular peaks at higher frequencies are represented equally. The energy level strongly overestimates
the sound power within the whole bandwidth but remains with an almost constant difference of 13 dB. As
expected, ERP is exact in the high frequencies.

The lumped parameter model as well as the volume velocity give more accurate results with similar or
higher computational costs. Especially the increasing error of PVV at high frequencies has to be taken into
account for choosing the correct sound radition measure.

Though, the kinetic energy enables the possibility of an adequate qualitative acoustic characterisation
showing all important dependencies but significantly deviating in the level. In addition, there are no additional
post-processing efforts as it can be taken straight from the structutral dynamic simulation.

Comparing the sound power estimates, the LPM gives most accurate results and thus is the best choice for
quantitative acoustic chracterisations without solving the coupled structural-acoustic system. Due to the long
reading time for the velocity fields and fast matrix operations, there is no need for faster sum algorithms of
ERP and PVV.

Further studies investigate the acoustic elements, the influence of the wall thickness and implement
anisotropic damping models for steady state dynamic analysis. Moreover, a vibro-acoustic optimiastion for
composite layups will benefit from the methodology developed here.
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