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ABSTRACT 

In this paper, a modified Fourier solution is developed for the free vibrations of a box-type structure as four 

elastically coupled rectangular plates with arbitrary boundary conditions. The modified Fourier solution for 

the problem is obtained using improved Fourier series method, in which both three displacements of the 

rectangular plates are represented by a new form of trigonometric series functions with a drastically 

improved convergence as compared with the conventional Fourier series. It is shown that the general 

coupling and boundary conditions are accounted for using the artificial spring technique and can be easily 

obtained by assigning the springs with corresponding values. All the unknown series expansion coefficients 

are treated as the generalized coordinates and solved using the Rayleigh-Ritz technique. The efficiency, 

accuracy and reliability of the proposed approach are demonstrated by comparison with the Finite Element 

Method (FEM) results. In addition, the current approach offers an easy analysis operation for the entire model 

parameters and the change of any parameter from one case to another is as easy as changing structure 

parameters without need of making any change to the solution procedure, thus this will make a parametric 

study and further mechanism analysis easier compared to most existing procedures. 
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1. INTRODUCTION 

Cylindrical shells are usually used as the simplified models to investigate the structure -borne sound 

of some practical engineering structures, such as the fuselages of aircraft, the hull of submarine, and so 

on. The reduction and control of the structure-borne sound is achieved by adopting the passive 

methods in the mid and high frequency range and the active structural acoustic control technique in 

the low frequency range in the practical applications. Quite a few of experimental and analytical 

studies have been conducted recently on the basis of cylindrical shell model, but few reports are 

concerned with another familiar engineering structure, the built-up plate structure, which is also 

widely used as the ship hull, piping systems and the cabin of vehicles, etc., with the advantages of 

having the light weight while retaining enough curved and wrest resistant st rength. In practice, the 

FEM is a convenient and effective choice to investigate the free and forced vibration characteristics 

for some complex configurations including the box-type structure. A great effort was made by Lin [2] 
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to illustrate the vibrational features of a box-type structure using the finite element method. The 

infinite number of modes was classified into six groups due to their symmetry and each group of 

modes was investigated in detail. The sound characteristics, such as the sound radiation  directivity 

and patterns of the box structure were also discussed [3]. Although the FEM is an effective means to 

make the dynamic analysis of a complex structure in the low frequency range, it is not more 

favorable and convenient than the analytical method to perform a further investigation of 

parameterization and mechanisms. For example, when the built -up box structure is appropriately 

modeled as a four side-panels configuration with adjacent plates coupled at right angle, the vibration 

analysis of this structure can be classified as the problem of coupled plates. This sort of problem can 

be analytically investigated for some classical boundary conditions. A typical work was presented by 

Pan and Farag [1] decade ago. They developed a rigidly coupled model consisting of two rectangular 

plates coupled at arbitrary angle to illustrate the dynamic response and power flow characteristics 

assuming that the coupled model had all other edges simply supported despite the coupling edge. In 

their calculation, the in-plane vibration was involved at the rigidly connected edge to satisfy the 

force and displacement equilibriums, the coupling angle and the contribution of components of 

flexural force which have an effect on power flow were also considered. They found that the moment 

played an important role in coupling below the cut-off frequency of the first in-plane mode.  

In this paper, a built-up box structure is modeled as four rectangular plates elastically connected 

at right angles under general boundary conditions. A great amount of research work has been 

reported in the literature to calculate the eigenpairs of rectangular plate structure under typical 

boundary conditions [4-7] and then the dynamic response and energy flow characteristics of 

beam/plate structure has been widely investigated employing the power flow technique [9-16]. 

Although the widely accepted fact is that the analytical solution of a rectangular plate only exists for 

some classical boundary conditions, the problem of generally restrained plate attracts many 

researchers’ attention [8,17-21]. An improved double Fourier series method was proposed by Li et al. 

[21] to analytically investigate the flexural vibration of a rectangular plate. By adding several 

auxiliary functions into the displacement expressions, the potential discontinuity through the whole 

plate area is overcome effectively for the arbitrary boundary restraint problem of a rectangular plate. 

Subsequently, this technique was extended into the in-plane eigenpairs calculation of a rectangular 

plate under artificially restrained edges [22,23] and a combination of these two displacement 

expressions was employed to elucidate the free vibration characteristics of two elastically coupled 

rectangular plates by Du et al. [24]. 

In this work, an analytical built-up box-type structure model is presented by treating and 

modeling the structure as four rectangular plates elastically connected at right angles under general 

boundary conditions. The exact double Fourier series solutions considering both the fl exural and 

in-plane vibrations are derived by using the Rayleigh-Ritz approach. The change of the boundary 

conditions can be easily achieved by only varying the stiffness of the three sets of the boundary springs 

at the all boundaries of the box-type structure without the need of making any change to the solutions. 

The excellent accuracy of the current result is validated by comparison with those obtained from other 

analytical approach as well as the Finite Element Method (FEM). Numerical results are presen ted to 

illustrate the current method is not only applied to the classical homogeneous boundary conditions but 

also other interesting and practically important boundary restraints on free vibrations of the box-type 

structure with varying stiffness of boundary springs. 

2. THEORETICAL FORMULATIONS 

A generally coupled plate model is schematically presented in Figure. 1, together with the global 

and local coordinates employed in this paper. This model indicates ample information including 

general boundary condition, right angles and elastically coupled condition. Each edge of the four 

component panels is restrained by three groups of translational springs distributed uniformly along 

the x, y, z axes separately and one group of rotational springs around the y-axis to simulate the given 

or typical boundary conditions expressed in the form of transverse shear force, in -plane shear force, 

in-plane longitudinal force, and the flexural moment, respectively. These linear springs are assigned 

very high stiffness values (in calculations artificial stiffness values of 1014) for a clamped edge and 

zero for a free boundary condition. Four additional groups of springs resembling the boundary 

springs are uniformly arranged at the coupling edge to artificially connect the two adjacent panels by 

regulating the values of coupling stiffness.  
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Figure 1 –A box-type built-up structure. 

In this paper, the double Fourier method is adopted and served to illustrate the free vibration 

features of a box-type structure. The result can be considered as the exact solution by solving the 

Rayleigh-Ritz equation which can be deduced from the combination of governing equations, 

boundary conditions for the whole system and continuity conditions at the coupling edges.  

The displacement presentation for the out-of-plane transverse vibration of plate i can be 

expressed as the following form according to the local coordinates: 

,

4 4
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i ii i mn a m b n
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                             (1) 

The in-plane displacements in x- and y- directions are separately described as 
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where Ai,mn, Bi,mn, Ci,mn denotes the series expansion coefficients, and 
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Mathematically, the series in the form of equations (1)-(3) are able to expand and uniformly converge to 

any function. So, the admissible functions expressed in a new form of trigonometric series expansions are 

introduced to remove the potential discontinuities with the functions and their derivatives. 

Four groups of springs which are associated with the transverse moment, out -of-plane shear force, 

in-plane longitudinal force, and in-plane shear force are introduced to illustrate the boundary 

restraints and the coupling interactions. The coupling effect of the plates is described by these 

internal forces which can be artificially regulated by changing the stiffness of corresponding springs. 

For a rigid connection, the stiffness of all the springs can be assigned an infinite value (in calculation 

the value 1014 was used). Thus, attached potential energy stored in the boundary and coupling 

springs should be considered. With the assumption of thin plate theory, the total potential energy and 

kinetic energy of the model, marked as V and T separately, can be concisely written as 
4

1

( + )i i i i

dt dj bt bj c

i

V V V V V V


                           (5) 

4

1

( )i i

dw dj

i

T T T


                             (6) 

In detail, i

dtV  and i

djV  mean the deformational energy related to the transverse and in-plane 

vibrations of plate i, respectively. i

btV  and i

bjV  are the additional potential energy associated with 

the transverse and in-plane boundary conditions of plate i, too.  
i

dwT  and i

djT  separately indicate the kinetic energy for the transverse and in-plane vibration of 

plate j. The specific expressions of terms in Eqs. (5) and (6) are as follows: 
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Here, ω is the angular frequency, D, G, m, ρ and h denote, respectively, the flexural rigidity, 

extensional rigidity, Poisson’s ratio, mass density and the thickness of plates. The symbols (kwi0, Kwi0) 

separately mean the linear and the torsional boundary springs for transverse vibration of plate i at the 

edge xi=0 while symbols (knxi0, kpxi0) separately denote the normal and the parallel linear springs for 

the in-plane vibration at the edge xi=0. The other boundary springs given above are similarly defined. 

In this paper, the uniform material parameters for all the plates are considered. The surface integral 

expressions in Eqs. (7) and (9) are the deformation energy stored in the plate and the contour integral 

terms in Eqs. (8) and (10) are the elastic energy stored in the boundary springs. The energy of the 

coupling springs between each two adjacent plates consists of four parts and can be written as Eq. 

(13). Taking plates 1 and 2 as examples, the coupling energy is expressed in Eq. (14), and the other 

terms in Eq. (14) will have the similar representations as well as Eq. (14) 
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where Kc_12, kcw_12, kcu_12 and kcv_12 are the stiffness values of those four coupling springs 

connecting plates 1 and 2. The other coupling springs are similarly defined. With   as the 

unknown coefficients and L as the Lagrangian, the Lagrange equation for the whole system can be 

obtained as 

0
L







                             (15) 

Make a differential calculation in Eq. (15), a group of linear equations can be derived in the 

matrix form: 

 2 K M E 0                         (16) 

The unknown coefficients in the displacement expressions can be expressed in the vector form as 

E.  
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In Eq.(16), the K is the stiffness matrix for the plate, and the M is the mass matrix. They can be 

expressed separately as: 
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Obviously, the natural frequencies and eigenvectors can now be readily obtained by solving a standard 

matrix eigenproblem. Since the components of each eigenvector are actually the expansion coefficients of 

the modified Fourier series, the corresponding mode shape can be directly determined from Eq. (1). 

3. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, a systematic comparison between the current solutions and theoretical results published 

by other researchers or finite element method (FEM) results is carried out to validate the excellent accuracy, 

reliability and feasibility of the modified Fourier method. This model is composed of four rectangular 

plates rigidly coupled along the y-direction with the same thickness h=2.5 mm, occupying the space (0.76

×0.6×0.6 m3). These four panels are made of aluminum and own identical material properties: mass 

density ρ=7800 kg/m3, Young’s modulus E=200 GPa and Poisson ratio μ=0.3. The comparison is conducted 

in the frequency range up to 500Hz. Each edge of the FEM model is divided into 100 linear elements, thus 

the FEM results are accurate enough to be as a reference. As shown in Figure.2, we will give four boundary 

conditions to demonstrate the current method, S, C, F and E represent the simply-support, clamped edge, 

free and elastic boundary condition, the boundary set spring values shown in Table 1. By truncating the 

series of both transverse and in-plane displacements to 12, the difference between the current calculations 

and the FEM results throughout the whole range is acceptable, with the maximum value of about 5 Hz. 

The Figures 3-6 shows the results of natural frequencies comparison the present method and the FEM 

with different boundary conditions (Figure 3 analysis of boundary conditions (a), Figure 4 analysis of 

boundary conditions (b), Figure 5 analysis of boundary conditions (c), and Figure 6 analysis of boundary 

conditions (a)). In addition, in order to validate the method, the first six mode shape calculated by the 

present method and FEM-based ABAQUS are shown in the Figure 7 and Figure 8. Through the Figs. 3-6 

and Figs. 7-8, we could know the present method not only solved the classical boundary, but also employed 

the method to study the elastic boundary condition. 

 

Table 1 – Values of spring for four type boundary conditions.  

Boundary condition 
Spring stiffness 

kw Kw kn kp 

Free edge (F) 0 0 0 0 

Clamped edge (C) 1×1014 1×1014 1×1014 1×1014 

Simply-supported (S) 1×1014 0 1×1014 1×1014 

Elastic-supported (E) 5×108 5×108 5×108 5×108 
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Figure 2 –The four type boundary conditions in this section. 
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Figure 3 –Comparison of natural frequencies between the present method and the FEM with the 

boundary condition (a) 
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Figure 4 – Comparison of natural frequencies between the present method and the FEM with the 

boundary condition (b) 
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Figure 5 – Comparison of natural frequencies between the present method and the FEM with the 

boundary condition (c) 
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Figure 6 – Comparison of natural frequencies between the present method and the FEM with the 

boundary condition (d) 
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Figure 7 – The first six mode shapes calculated by present approach with the boundary condition (b) 
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Figure 8 – The first six mode shapes calculated by ABAQUS with the boundary condition (b) 

4. CONCLUSIONS 

In this paper, a modified Fourier solution is developed for the free vibrations of a box-type structure 

as four elastically coupled rectangular plates with arbitrary boundary conditions. The out and in-plane 

displacements components of the plate, regardless of boundary conditions, are invariantly expressed 

as a new form of trigonometric series expansions with a drastically improved convergence as 

compared with the conventional Fourier series to ensure and accelerate the convergence of the solution.  

It is shown that the general coupling and boundary conditions are accounted for using the artificial 

spring technique and can be easily obtained by assigning the springs with corresponding values.  

Instead of seeking a solution in strong forms in the previous studies, all the Fourier coefficients will be 

treated equally and independently as the generalized coordinates and solved directly from the 

Rayleigh–Ritz technique. The change of the boundary conditions can be easily achieved by only 

varying the stiffness of the four sets of boundary springs along all edges of the box-type structure 

without involving any change to the solution procedure. The efficiency, accuracy and reliability of the 

proposed approach are demonstrated by comparison with the Finite Element Method (FEM) results . In 

addition, the current approach offers an easy analysis operation for the entire model parameters and the 

change of any parameter from one case to another is as easy as changing structure parameters without 

need of making any change to the solution procedure, thus this will make a parametric study and 

further mechanism analysis easier compared to most existing procedures.  
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