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ABSTRACT 

In the finite element method of a structural-acoustic coupled analysis, the mass matrix and the stiffness 
matrix are not symmetrical. Therefore, the modal analysis cannot be applied directly to the coupled 
problem. In our previous study, a concentrated mass model was proposed to analyze a two-dimensional 
acoustic analysis. The model consists of the masses, the connecting springs. It is very easy to couple the 
structure and acoustic field by the concentrate mass model. Furthermore, the mass matrix and the stiffness 
matrix are symmetrical. In this paper, we propose a concentrated mass model to perform a coupled analysis 
of a two-dimensional acoustic and a membrane vibration. And we propose a coupling method to arrange of 
the masses of the air near the membrane. To confirm the validity of the proposed model, the natural 
frequency obtained by the concentrated mass model is compared with the natural frequency by the modal 
coupling method. These results are in good agreement. Therefore, it is concluded that the proposed model 
is valid for the coupled analysis of an acoustic and a vibration analysis. 
 
Keywords: Simulation, Modeling Method I-INCE Classification of Subjects Number(s): 76.9 

1. INTRODUCTION 
To reduce interior noise in transportation vehicles, structural-acoustic coupled analysis has 

performed by the finite element method (1)-(3). However, it is difficult to couple a structure 
vibration analysis and an acoustic analysis because the displacement is used at the nodal point as the 
variable in the structure field, but the sound pressure or velocity potential is used as the variable in 
the acoustic field. In the finite element model of the structural-acoustic coupled problem, the 
equations of motion were given by Everstine et. al. (4), and Joseph (5) solved the equations by the 
modal coupling using the modal coordinate in the case of rigid wall and in vacuo. However, in the 
equations of motion, the mass matrix and the stiffness matrix are not symmetrical. Therefore, the 
modal analysis cannot be applied to the coupled problem because the orthogonality is not satisfied 
(6). To overcome this problem, MacNeal et. al. (7) symmetrized the matrix by the coordinate 
transformation. However, it is complicated to handle the method, and the coordinate transformation 
loses physical meanings.  

In our previous study, a concentrated mass model was proposed to analyze a two-dimensional 
acoustic analysis (8). The model consists of the masses, the connecting springs, and connecting 
dampers. The mass point is placed at the nodal point, and the variable of this model is the 
displacement of the mass point. In the case of the structural-acoustic coupled problem, the treatment 
of the coupling is only to place the mass point of the structure and the mass point of the acoustic 
field at the nodal points in each area. Therefore, it is very simple to derive the equations of motion of 
the mass points. Furthermore, the mass matrix and the stiffness matrix in the equations are 
symmetrical. Therefore, we can use the modal analysis easily by the concentrated mass model. And, 
the computational cost of the eigenvalue analysis becomes lower because of the symmetrical matrix. 
Another advantage of this model is to carry out easily a nonlinear acoustic analysis in the case of 
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large amplitude sound. 
In this paper, we propose a concentrated mass model to perform a coupled analysis of a 

two-dimensional acoustic and a membrane vibration. The sound space and the membrane are 
modeled as masses, and connecting springs. And we propose a coupling method between the acoustic 
analysis and the vibration analysis to arrange of the masses of the air near the membrane. To confirm 
the validity of the proposed model, the natural frequency obtained by the concentrated mass model is 
compared with the natural frequency by the modal coupling method.  

2. CONCENTRATED MASS MODEL 
We deal with a coupled problem of a two-dimensional acoustic in a rectangle-plate-shaped space 

and a one-dimensional membrane vibration, as shown in Fig. 1. One of the faces of the 
rectangle-plate-shaped space is the membrane and the other faces are rigid. The thickness of the 
acoustic space is h. The air in the acoustic space and the membrane are modeled as the concentrated 
mass model which consists of masses, connecting springs and connecting damper, as shown in Figs. 2 
and 5. 

2.1 Model of Acoustic Space (8) 
The air in the acoustic space is modeled as the concentrated mass model which consists of masses, 

connecting springs as shown in Fig. 2. The space is divided into uniform rectangular elements such 
that the length is xl , yl , as shown in Fig. 3. The mass is concentrated on the intersection point (nodal 
point). The displacement of the nodal point (i, j) in x direction is ,i jx , the displacement in y direction 
is ,i jy , the sound pressure in element [i, j] is ,i jdp . The pressure in equilibrium state is 0p , the 
density in equilibrium state is 0 , the volume in each element in equilibrium state is 0  x yV hl l . 
Considering the mass of air in the shaded area in Fig. 3, the mass of each mass point, m, is written as 
follow  

0 x ym hl l  (1)

,i jdV  is the variation of volume in element [i, j] when the mass points move, as shown in Fig. 4. 
Using the displacement of each mass point, ,i jdV  is given by 

   , , , 1 1, 1, 1 , 1, , 1 1, 12               i j y i j i j i j i j x i j i j i j i j
h

dV l x x x x l y y y y  (2)

Considering an adiabatic change, the sound pressure, ,i jdp , becomes 

0 ,
,

0

  i j
i j

p dV
dp

V


 (3)

Considering the force acting on the shaded area in Fig. 3, the x direction force acting on the mass 
point (i, j) from the sound pressure, ,

kx
i jf , and the y direction force, ,

ky
i jf , are written as follows  

 

 

, , , 1 1, 1, 1

, , 1, , 1 1, 1

2

2

ykx
i j i j i j i j i j

ky x
i j i j i j i j i j

hl
f dp dp dp dp

hl
f dp dp dp dp

   

   


    


    

 (4)

In addition to this spring force, the base support damper from the shear stress from the upper and 
lower walls and the connecting damper from the shear stress in x, y direction and from the normal 
stress were derived (3). However, these dampers are not considered in this paper. 
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x
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               Figure 1 – Analytical space           Figure 2 – Concentrated mass model 
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            Figure 3 – Square lattice           Figure 4 – Volume variation in element 
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             Figure 5 – Model of membrane           Figure 6 – Element of membrane 
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Figure 7 – Square lattice 

 

2.2 Model of Membrane 
In this section, the membrane face in Fig. 1 is model as the concentrated mass model which 

consists of masses, connecting springs as shown in Fig. 5. We consider a one-dimensional membrane. 
The space is divided into uniform elements such that the length is yl , as shown in Fig. 6. The division 
number is yN . The mass is concentrated on the nodal point. The displacement of the nodal point j in 
x direction is j , the tension of the membrane is mT , the surface density is m . 

Considering the mass of the membrane in the shaded area in Fig. 6, the mass of each mass point, 

mm , is written as follow 

m ym hl  (5)

The restoring force of the membrane is model as the spring. The forces in Fig. 7 act on the shaded 
area in Fig. 6. The displacement of the membrane in x direction is ( )y . The x direction component 
of the tension from the left side is ( / )m LT y   , so the restoring force from the left side becomes 

m m
L

f T h
y

 
   

 (6)

If we relate x  to the displacement of the mass point jx , and transform Eq. (6) to the finite 
difference form, we get 

1j j
m m

y

f T h
l

  
  (7)

From this equation, the constant of spring in Fig. 5 is 

m
m

y

T h
k

l
  (8)

 



Page 4 of 10  Inter-noise 2014 

Page 4 of 10  Inter-noise 2014 

 

j( 2, )xN j

( 2, 1)xN j  ( 1, 1)xN j 
1j 

( 2, 1)xN j  ( 1, 1)xN j 

1j 

[ 1, 1]xN j  [ , 1]xN j 

[ 1, ]xN j [ , ]xN j

xl l

( 1, )xN j( 3, )xN j

( 3, 1)xN j 

( 3, 1)xN j 

[ 2, 1]xN j 

[ 2, ]xN j

xl

yl

yl

membrane

xl

l

[ 1, 1]xN j 

[ 1, ]xN j

( , )xN j

x

y

mass point j

mass point 1j 
xl

( , 1)xN j 

 

Figure 8 – Placement of mass point near membrane 

 

2.3 Treatment of Coupled Region 
In this section, we explain the treatment of the coupled region of the acoustic space and the 

membrane. Figure 8 shows the mass arrangement in x-y plane in the vicinity of the membrane. The 
heavy line at the right end indicates the membrane, and the acoustic space on the left side of the 
membrane is divided into uniform elements such that the length is xl  in x direction. The division 
number is xN . The right end elements [ xN , *] are divided, and we put the new elements [ 1xN  , *] 
such that the length is lD  next to the membrane. The masses indicated by the double circles are 
concentrated on the intersection point. Considering the mass of air in the shaded area in Fig. 8, the 
mass of the mass point, m , is written as follow 

 0
1

2 y xm hl l l  D  (9)

 
Using the displacement of mass point of the membrane, the variation of volume in element [ 1xN  , 
j] is given by 

   1, 1 , , 1 , , 12x x x x xN j y j j N j N j N j N j
h

dV l x x l y y            (10)

The sound pressure in element [ 1xN  , j], 1,xN jdp  , is calculated by using Eqs. (3) and (10). The 
sound pressure in element [ 1xN  , j], 1,xN jdp  , and the sound pressure in element [ 1xN  , 1j  ], 

1, 1xN jdp   , act on the mass point j of the membrane. Then, the equation of motion of the menbrane 
mass point becomes 

   1 1 1, 1, 12
2 x x

y
m j m j j j N j N j

l h
m k dp dp             (11)

 

2.4 Equation of Motion 
Arranging the equations of motion of each mass, the matrix representation of the equations is 

expressed as follow 

 Mx Kx 0  (12)

where M  is the mass matrix, K is the stiffness matrix which consists of restoring forces of Eqs. 
(4) and (7), and x  is the displacement vector arranging the displacement of each mass point as 
follow equation 

0,0 0,1 1, 0,0 0,1 1,, , , , , , , 
   x  

x y x y

T

n n n nx x x y y y  (13)

M  is the diagonal matrix arranging the mass, and K  is the symmetric matrix from the reciprocity 
theorem. Then, M  and K  are the symmetric matrix. Therefore, we can use the modal analysis 
easily by Eq.(12). Furthermore, the computational cost of the eigenvalue analysis becomes lower by 
the eigenvalue analysis method for symmetric matrix.  
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3. COMPARISON WITH MODAL COUPLING METHOD 
To confirm the validity of the coupling model proposed in section 2, we calculate the natural 

frequency of the rectangle-plate-shaped space comprising five rigid walls and one membrane wall in 
Fig. 1, and compare the natural frequency by the proposed model with the results by the modal 
coupling method (9). The boundary conditions of the acoustic field are given as follows 

0: 0xx v   (14)

:x xx L v
t


 


(15)

0, ; 0y yy L v  (16)

where xv

 

is the particle velocity in x direction, yv  is the particle velocity in y direction. In Eq. 
(15), the particle velocity corresponds with the velocity of the membrane. The boundary conditions 
of the one-dimensional membrane are given as follows 

0, : 0yy L    (17)

 

3.1 Modal Coupling Method (9) 

The wave equation of the two-dimensional acoustic space is given by 
2 2 2

2
2 2 2

c
t x y

     
  

   
 (18)

where   is the velocity potential, c  is the sound speed. If we assume the solution of this equation is 
( , ) j tx y e   F ( 1j   ,   is the angular frequency), and consider the boundary conditions (Eqs. (14), 

(16)), we get the eigenfunctions 

cos cosr r
y

r
a x y

L

 F  (19)

where ra  is the arbitrary constant, r  is the order, and r  is follow equation. 
2 2 2

2
2 2r

y

r

c L

     (20)

To satisfy the boundary condition of Eq. (15), F  is expressed as the sum of the eigenfunctions as 
follow equation. 

0

cos cos
N

r r
yr

r
a x y

L




 F  (21)

On the other hand, the equation of motion of the membrane is given by 

 
2 2

2
2 2

 
 

 
 

  x
m x L

m

h
c p

t y
 (22)

where /m m mc T  , p  is sound pressure. Differentiating this equation with respect to time, and 
assuming /   t , we can get 

2 2
2

2 2

1 
 

         
x

m
m x L

p
c

tt y
 (23)

If we assume ( )   j ty eY , the eigenfunction satisfying the boundary conditions of Eq. (17) becomes 

sinr
y

r
b y

L


Y  (24)

where rb  is the arbitrary constant. Y  is expressed as the sum of the eigenfunctions 

1

sin
N

r
yr

r
b y

L





Y  (25)

From Eq.(21), the sound pressure, p , becomes 

0

cos cos
N

j t
r r

yr

r
p j a x y e

t L
   




   

    (26)

Substituting this sound pressure, p , and   using Eq. (25) into Eq. (23), and multiply both sides 
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by sin( / ) yq y L , and integrating from 0 to yL  with respect to y, we can get 

 2 2 2

0

cos cos
2

N
y

q m q r qr r
yr

L r
h b h a x y

L

      


    (27)

where q  is the q th natural frequency, q  and qr  are follow equations  
 r m
y

q
c

L
 (28)

   

 

2 2

0

2
2

sin cos

0 2

  


 

   
  

 y

y
L

qr
y y

qL
q r lq q

q ry ydy
L L

q r l

 (29)

From the boundary condition of Eq. (15), we get 

1 0

sin sin cos
N N

r r r r x
y yr r

r r
b y a L y

L L

  
 

    (30)

Multiplying both sides of this equation by sin( / ) yq y L , and integrating from 0 to yL  with respect 
to y, we can get 

0

sin
2

N
y

q r qr r r x
r

L
b a L  


   (31)

Arranging Eqs. (27), (31) in order 0,1,2,q   , we get the system of equations about 1 2 3, , ,a a a  , 

1 2 3, , ,b b b  . By finding nontrivial solutions of the system of equations, we get the natural 
frequencies and mode shapes of the coupled system. 
 

3.2 Analysis by Concentrated Mass Model 
To find the natural frequency and the natural mode by the concentrated mass model, the equation of 
motion of each mass is expressed by the matrix representation. If we assume j te  

x X , Eq. (13) 
becomes the generalized eigenvalue problem like follow equation 

2   K M X 0  (32)

This equation gives the natural frequencies and mode shapes.  
The parameters of the simulation are listed in Table 1. About the division of elements near the 

membrane in Section 2.3, we simulate in three conditions: without division ( xl lD ), / 2xl lD , 
and / 5xl lD . 
 

Table 1 – Parameter values 

xL  [m] 0.4 yL  [m] 0.5 

xN  40 yN  50 

h  [mm] 30 0p  [MPa] 0.1013 

0  [kg/m3] 1.27   1.4 

m  [kg/m2] 0.046 mT  [N] 300 

 

3.3 Numerical Results 
Table 2 shows the comparison between the natural frequency by the concentrated mass model and 

the natural frequency by the modal coupling theorem. The natural frequencies which has the mode 
number (1,2,3, ) are appropriate solutions. In case the mode number is slanting line, the solutions 
are spurious mode (10). Figure 12 shows the spurious mode at 387.80 Hz and 684.67 Hz. In the case 
of the spurious mode, the sound pressure is distributed in a patchy fashion. Meanwhile, the 
numerical results by the concentrated mass model have the zero eigenvalues because the degree of 
freedom of the model has a surplus. The number of the zero eigenvalues is half of the degree of 
freedom of the model. In the case of the zero eigenvalue, each element does not have the sound 
pressure though there are displacements of the mass points.  
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From table 2, the natural frequencies by the concentrated mass model agree well with the natural 
frequencies by the modal coupling theorem except in spurious mode. Comparing xl lD , 

/ 2xl lD , and / 5xl lD , the natural frequencies in the case of / 5xl lD  most closely 
correspond the natural frequencies by the modal coupling method. Figure 9 shows the natural 
frequency to variation of /xl lD  in the case of 1st mode and 4th mode. The dashed line shows the 
natural frequency by the modal coupling method. From Fig. 9, as /xl lD  is large, the natural 
frequency approaches the results by the modal coupling method. Namely, as the mass points next to 
the membrane approach the membrane, the natural frequencies by the concentrated mass model are 
valid. The boundary condition between the acoustic space and the membrane needs to satisfy the 
follow equations 

xv
t





 (33)

p
j

x t

 
 

 
 (34)

Equation (33) is the geometric boundary condition, and Eq. (34) is the mechanical boundary 
condition. We define LB , RB  as the amplitudes of the left side and the right side of Eq. (33), LC , 

RC  as the amplitudes of the left side and the right side of Eq. (34). The difference between the left 
side and the right side in Eqs. (33) and (34) , 1err , 2err , are defined as follows 

1
L R

R

B B
err

B


  (35)

2
L R

R

C C
err

C


 (36)

Figure 10 shows 1eer , 2eer  at 0.5mx  , 0.15my   in 1st mode by the concentrated mass model. 
/p x   in Eq. (33) is calculated by using finite difference form as 1, ,/ ( ) /

x xN j N j xp x p p l    . 
From Fig. 10, as /xl lD  is large, 1eer  and 2eer  become small. Namely, as the mass points next 
tothe membrane approach the membrane, the model satisfies the boundary conditions of Eqs. (32), 
(33). The velocity of the mass point of air shown as the double circle in Fig. 8 approaches the 
velocity of mass point of the membrane, and the equilibrium of force comes to be satisfied as lD  
 

Table 2 – Natural frequency of coupled problem 

Mode 

number 

Concentrated mass model Modal 

coupling xl lD  / 2xl lD  / 5xl lD  

Number 
Natural 

frequency [Hz] 
Number

Natural 

Frequency [Hz]
Number

Natural 

frequency [Hz] 

Natural 

frequency 

 1950 0 2000 0 2000 0  

1 1 282.11 1 282.56 1 282.81 283.00 

2 1 305.20 1 307.79 1 309.22 310.23 

 1 387.80 1 409.09 1 433.81  

3 1 468.14 1 469.95 1 470.99 471.90 

4 1 547.23 1 552.58 1 555.55 558.10 

5 1 667.62 1 670.00 1 671.24 672.44 

 1 684.67 1 685.93 1 685.23  

 1 705.83 1 734.91 1 759.51  

6 1 741.78 1 745.75 1 748.10 750.60 

7 1 745.01 1 750.53 1 753.37 756.42 

8 1 902.89 1 918.68 1 927.49 935.08 

 1 903.53 1 926.31 1 967.12  

9 1 949.23 1 949.36 1 949.50 951.57 

10 1 1016.93 1 1023.21 1 1026.44 1031.04 
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Figure 9 – Natural frequency to variation of /xl lD  
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Figure 10 – Error of boundary condition to variation of /xl lD  
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(a) Concentrated mass model (1st mode)          (b) Modal coupling method (1st mode) 
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(c) Concentrated mass model (3rd mode)           (d) Modal coupling method (3rd mode) 

Figure 11 – Mode shapes of sound pressure and membrane 
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(a) 387.80 Hz                                (b) 684.67 Hz 

Figure 12 – Spurious mode (sound pressure and membrane mode) 

 

Table 3 – Natural frequency of acoustic space in 
case of rigid wall 

Mode number Natural frequency [Hz]

(0, 1) 334.17 

(1, 0) 417.71 

(1, 1) 534.93 

(0, 2) 668.34 

(1, 2) 788.14 

(2, 0) 835.42 

(2, 1) 899.78 

(0, 3) 1002.51 

Table 4 –Natural frequency of membrane in vacuo 

 

Mode number Natural frequency [Hz]

1 571.04 

2 1142.08 

3 1713.12 

4 2284.16 

5 2855.20 

6 3426.24 

7 3997.28 

8 4568.32 

 
becomes small. 

Figure 11 is the comparison between the natural mode shape by the concentrated mass model 
( xl lD ) and the mode shape by the modal coupling method. In (a) and (b), the order of the natural 
mode is first, and in (c) and (d), the order is third. The left-side figure is the mode shape of the sound 
pressure, and the right-side figure is the mode shape of the membrane. In each mode, the mode shape 
by the concentrated mass model agrees well with it by the modal coupling method. The first mode is 
the acoustic (1,0) mode, third mode is the acoustic (1,1) mode. Table 3 shows the natural frequencies 
of the acoustic field in the case of the rigid wall, and table 4 shows the natural frequencies of the 
membrane in vacuo. So the natural frequencies of the coupled problem decrease from the natural 
frequency of the acoustic field in the case of the rigid wall. 

As shown above, though the spurious mode and the zero eigenvalue exist in the numerical results 
by the concentrated mass model, the concentrated mass model is valid for the coupled analysis of 
acoustic and membrane vibration. 
 

3.4 Computation time 
To confirm the advantage of the proposed model to the finite element model, the computation 

time of eigenvalue analysis is measured in each method. The equation of FEM is given by (4),(5) 

        
         

         

K KM 0 u u F

M M p 0 K p 0





ss sfss s

fs ff ff

 (37)

The degree of freedom of the concentrated mass model is approximately twice that of FEM. The 
eigenvalue analysis is performed by Intel Math Kernel Library. The eigenvalue analysis method of 
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the concentrated mass model is the divide-and-conquer method for symmetric matrix, and the 
method of FEM is QR method for asymmetric matrix. 

Table 5 shows the comparison of computation time in each division number. The concentrated 
mass model is faster than FEM in spite of the twice degree of freedom. 
 

Table 5 – Comparison of computation time 

Division number 20, 25 x yN N  40, 50 x yN N  80, 100 x yN N  

Concentrated mass model 0.0625 s 2.350 s 87.42 s 

FEM 0.1938 s 6.116 s 463.54 s 
 

4. CONCLUSIONS 
To analyze the coupled problem of the two-dimensional acoustic in the rectangle-plate-shaped 

space and the membrane vibration, we propose the concentrated mass model that consists of the mass 
and the connecting spring. The acoustic space and the membrane are modeled as the concentrated 
mass model respectively. The treatment of the boundary between the acoustic space and the 
membrane is only the arrangement of the masses of the air near the membrane. It is very easy to 
couple the structure and acoustic field by the concentrate mass model. Furthermore, the mass matrix 
and the stiffness matrix are symmetrical. Therefore, we can use the modal analysis easily by this 
model. And, we confirm the validity of the concentrated mass model by comparing the natural mode 
computed by this model with the results by the modal coupling method. Though there are 
physically-meaningless modes in the solution by the proposed model like the spurious mode and the 
zero eigenvalues, we can obtain the natural frequency and the mode shape that agree well with the 
results by the modal coupling method. Furthermore, it is confirmed that the computation time of the 
concentrated mass model is faster than FEM in eigenvalue analysis. Therefore, the concentrated mass 
model we propose in this paper is valid for the coupled analysis of the two-dimensional acoustic and 
the membrane vibration. The future task is the elimination of the spurious mode and the zero 
eigenvalues. 
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