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ABSTRACT

One of the main hydraulic elements to reduce nagkvibration of pipelines is a rubber-cord hoshkictv
consists of a composite shell and attachment ferggthin the frames of a beam model dynamic beiravi

of pipeline elements is described with impedanc&ima4x14, which can be determined by calculaton
experiment. In the current paper a theoretical beaodel of fluid-filled hose is introduced, takingtd
account with orthotropic and viscoelastic properti€ composite shell. Expressions for impedanceixat
elements are presented in analytical form. Sommesiés are measured and good agreement between
predicted and measured characteristics is shown.
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1. INTRODUCTION

Beam model is widely used to predict vibration gfipeline (1, 2, 3). In this model straight element
of the pipeline is described by the matrix of impades shown in Fig. 1.

g'xin) | 'y | g i) | @' x@n) [ @'yii) | @' in) [ Vx(in) |G x(ou) | O y(out) | G Zout) [ @' x(ou) | @' y(out) | @' z(out) [ V x(out)
Vi Va2 Vs Va Vs Ve \A Vs Vo Vio | Vi1 | V2 | Viz | Vua
Fxin | Q1| Z11 -Z71 | -Zsa Ziaa
Fyin | Q2 Z22 Z62 -Z92 7132
Fzin) | Q3 Z22 -Z62 -Z9,2 -Z 132
Mxin) | Qa4 Zaa -Z11,4
Myin) | Qs -Z62 Zss Z132 Z12s
M zin) | Qs Z62 Z55 -Z13.2 Z125
Piy | Q7 | Z71 Z77 | Z1aa -Zia7
Fxouw | Qs | Zs1 -Ziu1| -Z1a Z71
Fyouw | Qo Z92 Z132 -Z22 Z62
F zouw) | Q 10 Z92 -Z 13,2 -Z22 -Z62
M x(outy | Q 12 Z114 -Z a4
My(ouy | Q 12 Z132 -Z125 -Ze2 -Zss
M zou) | Q 13 -Z132 -Z125 Z62 -Z55
Puy | Q14 |-Z142 Zw71 | Z7a 21,7

Figure 1 — Impedance matrix of straight pipelinetios

Impedance matrix model of hose based on equatibisotropic pipeline was developed in (4, 5).
This model takes into account Poisson’s fluid-stuwe interaction and isotropic material of the hose
Orthotropic and viscoelatic properties of the hoae be considered indirectly by fitting wavenumbers
from experimental data (4, 6, 7, 8, 9). Three-paater Kelvin—Voigt model for fluid vibration in
viscoelatic hose was presented in (7, 10). In @dpressions for impedance were derived for the
orthotropic shell without viscoelastic propertiesdaonly longitudinal wave propagation was
considered.
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Model of the longitudinal vibration taking into ament fluid-structure, as well as anisotropic
properties and features of shell reinforcementgtesbut do not take into account the viscoelastic
properties was proposed in (12).

In this paper one-dimensional model of fluid-filldbse is developed taking into account its
anisotropic and viscoelastic properties. Numerieallt is compared with experimental data obtained
by the method (13).

2. ONE-DIMENSIONAL MODEL OF HOSE

In (14) it was shown that in a limited frequencynga orthotropic fluid-filled shell can be
considered a one-dimensional approach. Thus, theisteel pipe, can be considered only four tyges o
waves — a plane wave in the fluid, longitudinakileal and torsional waves in the shell. Hose flange
are considered as perfectly rigid bodies.

Reinforced shell of hose is generally a multilagemposite consisting of layers of matrix and
fiber.). Formulas for the elastic constants of teenposite in the principal directions of elasticéne
given in (15). Shell has orthotropic if the cordl@d to the meridian at an angle in a cylindrical
coordinate system.

Elastic parameters of the generalized Hooke's faaylindrical coordinates for the shell with the
fiber laying angle+6 are given by (16)

B,, = Bj, cos’ 8+ 2(B;, + 2By )sin® fcos’ 8 + B, sin* 8
B,, = B, sin* 8+ 2(B;, + 2By )sin® 8cos’ 8 + B,, cos' &
By, = B, +[B}; + By, — 2(B}, + 2By, )]sin® fcos’ 6
Bes = Bis +[Bi1 + By, — 2(By, + 2By, )|sin” Hcos’ 8

1)

where

E ' E . .
: B,, = 1—|/2|/ v Beg =G, By =
V2

voBy Vi
1-vy, 1-vy,

Bil = ;
1-vy,
Here E;, E,, v,, v, are the elastic parameters (principal directions).

Frequency-dependent elastic modulus and loss faétibye matrix can be derived from rheological
two-element Kelvin—Voigt model:

En(f)= Er?"l(TE,t,lf 2 +Tg o f +D) (Tg, f +1)

() =,7r?1(rf7,t,lf 2+ Tpeof +D) (1, f +D)

where E,?q, ’7:1 are values of elastic modulus and loss factor bz f is the frequency;T is the
parameter. Losses is taken in consideration as ngastic modulus (17)

En(f) = En(f)A+in,())

2.1 Longitudinal wave propagation

Longitudinal vibration can be described by follogiequation (12)
0'P . 9°P
—+a—+pMP=0 2
ox* x> o @

a =’ (Ap; +Sup,), B=a' P ps(AS, - 2BS))

Al Ol 2RSy  25,0+NIR) R?((R+h)2In@+h/R) + (R+h/2)h)
O h @2+h/R) ' 2h2(R+h/2)? '

Here S;; =By /By, S, =By /By, S, =-B,/By, Si6=1/Bs, By =B1By _(B12)2 , his the
wall thickness; R is the internal radius;o,, p; are the densities of shell and fluid; is the
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velocity of sound in fluid; «is the angular frequency.
The solution of equation (2) is

P - CleMlX + Cze—MlX + C3ei/13x + C4e—i/13)(
where A,;are wavenumbers.

A =\/(—a+m)/2
Asz\/(—a—mjlz

Impedance matrix elements related with longitudindbrations with regard for boundary
conditions are given by

iap,S {_ Aghs codyl) | A5 codAyl) AP (/13 codyl) A cos(/lsl)D riam,

(At = Agr)| sin(A172)  sin(Al /2) fsin(/11|/2) sin(A4l /2)

Zy, =

__ laps _ A A A 2 A
Zo1 = (/1l,u3 —/13;11){ sin(AlI) * sin(/13l) tALP sm(/l I) sin ( )
_ 285,00 ps ((Azcodl) _ A cod )
(At = Agy)\ sin(Ay1 72)  sin(Aql /2)

_aAsu@wpips( A A
Y (s = Ay )\ sin(A,] 12)  sin(A4l /2)

7 = ~iap; ty codAyl) _Hs codA )J
77 =

TR? (At —/13;11){Sin()l3l 12)  sin(A) /2)
Z - _iapf lul _ :u3
B IR Mty = Aoy )\ sinfAsl) - sin(Ayl)
where 1, = A - Aw’pi Ay 1y = A3 — Aw’p Ay M is the mass of the flange without fluid; is the

length of elastic part of the hose.

2.2 Transverse wave propagation
Transverse vibration can be given by following etipra

04W B, )0°w 5 P& yw4
Buly +wp + — —| PSW ————— w=0 3
Y x4 ¢ y( )(Beej x> XBss )

where p, is the effective density;l, is the moment of inertia of shell cross-sectiddis the area of

shell cross-section;y is the shear coefficient.
Effective density is given by
Ps
(1+h/R)* -1
According to (18) shear coefficient of orthotrofeam with ring cross-section is given by
3By, (L-q*)A+q°)/2
BsB12(29° +18q°" ~189° - 2)/ By, — By, (79° —27q* - 2797 - 7) /4
where g=R/(R+h).
The solution of equation (3) is
w(x) = C, cosk,x+C, sink x+ C, chk,x+C, shk, x
Two waves propagate in the beam described by emua(B), but the second wave is
inhomogeneous in low-frequency region. Wavenumbfehe first wave is given by

Pe = Ps*
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2
Kk, = 20 pe {1_ Bi J + B;,S +(l + B,y ]
By 4) [Bgg w’p, 0 y 4)x [(Bes

Impedance matrix elements related with transveisetions are given by

iBy,l kS
22 = Blz—yb (C, sin(k,) - C, cogk ) + C sinh{k,! ) + C, cosH{k,!)) +icm,
Byl kS
02 = T(_ 2C,)
iBy,l k2
62 = 'i—ay)b(— C, codk,|) - C, sink,| ) + C; cosHk,| ) + C, sinh(k,|)) +

Byl kS

+1, (c, sin(k,l)- C, codk,| )+ C, sinh(k,| )+ C, cosHk,!))

iBy,l k2
Zyar = %ay)b (— 2C, + 2I1kbCZ)
here C, =-C, =(codk,l)- cosHk,!)) /(2 - 2cosHk,!|)codk,!)) ;
C, =-C, = (sin(ky!) + sinh{k,!)) /(2 - 2cosHk,! ) codk,!)) ;
l,is the length of the flangem, is the mass of the flange.
__iBylykp

35 4w

Byl kS

(- ¢, codk,l) - C, sin(k,!) + C, cosHk, ) + C, sinh{k,|)) -

(= ¢, sin(kyl) - C, codkel) + Cy sinhlk, 1) + C, cosHk,l)) +ia,

ly

H 2
Z55 =%(C1 +|1kbC2)
Ik, (cogk,|)—coshk,l))+sinlk,l ) — sinh{k,|
here C,=-C;=-= olcod bZIZb(l—crcfslf(lz)bl)cos((kli,l))) e );
Co-— = ~ 1k, (sin(k,! ) + sinh(k, 1)) + cogk,| ) - cosHk,!) |
2 ! 2k, (1- cosHk,|)codk,!)) ’
J, is the moment of inertia of the flange.

2.3 Torsional wave propagation

Coloumb, Saint-Venant and Timoshenko beam theoge® the same results for the ring
cross-section (19). Therefore technical theoryaaf is used to describe torsional vibration.

2

2
(= | <P
BGS

_ il Bggk; coskl .
wsink!

where

here p, is the density of rod.

wJ

44 x
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— il xBﬁﬁkt
14 wsink|

where |, is the moment of inertia;], is the moment of inertia of flange without fluid.

3. EXPERIMENTS

To verify the analytical model, numerical resulter@ compared with experimental data. The
parameters of the test hose are shown in Table 1.

Table 1 — Parameters of hose

Parameter Value Parameter Value

B, Pa 1.64-16 m,., kg 20.6

B,,, Pa 4.2:16 m, , kg 21.8

B, Pa 2.54.16 |, m 0.7

By, Pa 2.52.16 l,, m 0.15

0., kg/n? 1166 J., kg-nf 0.109

Py, kgint 1000 J,, kg-nf 0.085

Cr, Mm/s 1400 EY, Pa 1-10

h, m 0.009 nd 0.19

R, m 0.05 Tepas Tegas Tepa 1.64-1¢; 0.012; 0.0082
Tyeas Tpras Tpia 3.5-10% 0.1; 0.11

Measurements were performed using the method destin (13). Comparison of the measured
data and numerical results is shown in Fig. 2.

Z, Ns/m ——72,2_Measured ——79,2_Measured Z, Nms/rad ——Z75,5_Measured —2Z12,5_Measured
1E+05 ——72,2_Predicted ——279,2_Predicted 1E+03 ——75,5_Predicted —712,5_Predicted | |
Levod A /
MM -
1.E+03 v o
1.E+01
1.E+02 v
1.E+01 - 1.E+00 - -
0.1 1 10 100 1000 1 10 100 1000
Frequency, Hz Frequency, Hz
Z,Ns Z, Pal(m"3/s)
1.E+04 ===Z13,2_Measured ——2713,2_Predicted | 1.E+09 ==714,7_Measured ——2714,7_Predicted |
1.E+03 P
W HEo
1.E+02 \\ 7 =2
1.E+07 7
1E+01 \} U
1.E+00 T T 1.E+06 T
1 10 100 1000 10 100 1000
Frequency, Hz Frequency, Hz

Figure 2 — Impedance matrix of straight pipelinetisa
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4. CONCLUSIONS

One-dimensional model of the fluid-filled hose tadfiinto account fluid-structure interaction,
viscoelastic and orthotropic properties is introgldic Analytical expressions for elements of the
impedance matrix based on this model are obtai@smmparison shows good agreement between
experimental data and numerical predictions.
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