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Impedance matrix of rubber-cord fluid-filled hose 

Aleksei SOKOLOV1 
1 Krylov State Research Centre, Russia 

ABSTRACT 
One of the main hydraulic elements to reduce noise and vibration of pipelines is a rubber-cord hose, which 
consists of a composite shell and attachment flanges. Within the frames of a beam model dynamic behavior 
of pipeline elements is described with impedance matrix 14x14, which can be determined by calculation or 
experiment. In the current paper a theoretical beam model of fluid-filled hose is introduced, taking into 
account with orthotropic and viscoelastic properties of composite shell. Expressions for impedance matrix 
elements are presented in analytical form. Some elements are measured and good agreement between 
predicted and measured characteristics is shown. 
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1. INTRODUCTION 
Beam model is widely used to predict vibration of a pipeline (1, 2, 3). In this model straight element 

of the pipeline is described by the matrix of impedances shown in Fig. 1. 
q' x(in) q' y(in) q' z(in) φ' x(in) φ' y(in) φ' z(in) V x(in) q' x(out) q' y(out) q' z(out) φ' x(out) φ' y(out) φ' z(out) V x(out)

V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13 V 14

F x(in) Q 1 Z 1,1 -Z 7,1 -Z 8,1 Z 14,1

F y(in) Q 2 Z 2,2 Z 6,2 -Z 9,2 Z 13,2

F z(in) Q 3 Z 2,2 -Z 6,2 -Z 9,2 -Z 13,2

M x(in) Q 4 Z 4,4 -Z 11,4

M y(in) Q 5 -Z 6,2 Z 5,5 Z 13,2 Z 12,5

M z(in) Q 6 Z 6,2 Z 5,5 -Z 13,2 Z 12,5

P (in) Q 7 -Z 7,1 Z 7,7 Z 14,1 -Z 14,7

F x(out) Q 8 Z 8,1 -Z 14,1 -Z 1,1 Z 7,1

F y(out) Q 9 Z 9,2 Z 13,2 -Z 2,2 Z 6,2

F z(out) Q 10 Z 9,2 -Z 13,2 -Z 2,2 -Z 6,2

M x(out) Q 11 Z 11,4 -Z 4,4

M y(out) Q 12 Z 13,2 -Z 12,5 -Z 6,2 -Z 5,5

M z(out ) Q 13 -Z 13,2 -Z 12,5 Z 6,2 -Z 5,5

P (out) Q 14 -Z 14,1 Z 14,7 Z 7,1 -Z 7,7  
Figure 1 – Impedance matrix of straight pipeline section 

Impedance matrix model of hose based on equations of isotropic pipeline was developed in (4, 5). 
This model takes into account Poisson’s fluid-structure interaction and isotropic material of the hose. 
Orthotropic and viscoelatic properties of the hose can be considered indirectly by fitting wavenumbers 
from experimental data (4, 6, 7, 8, 9).  Three-parameter Kelvin–Voigt model for fluid vibration in 
viscoelatic hose was presented in (7, 10). In (11) expressions for impedance were derived for the 
orthotropic shell without viscoelastic properties and only longitudinal wave propagation was 
considered.  
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Model of the longitudinal vibration taking into account fluid-structure, as well as anisotropic 
properties and features of shell reinforcement design, but do not take into account the viscoelastic 
properties was proposed in (12). 

In this paper one-dimensional model of fluid-filled hose is developed taking into account its 
anisotropic and viscoelastic properties. Numerical result is compared with experimental data obtained 
by the method (13). 

2. ONE-DIMENSIONAL MODEL OF HOSE 
In (14) it was shown that in a limited frequency range orthotropic fluid-filled shell can be 

considered a one-dimensional approach. Thus, as in the steel pipe, can be considered only four types of 
waves – a plane wave in the fluid, longitudinal flexural and torsional waves in the shell. Hose flanges 
are considered as perfectly rigid bodies.  

Reinforced shell of hose is generally a multilayer composite consisting of layers of matrix and 
fiber.). Formulas for the elastic constants of the composite in the principal directions of elasticity are 
given in (15). Shell has orthotropic if the cord is laid to the meridian at an angle in a cylindrical 
coordinate system. 

Elastic parameters of the generalized Hooke's law in cylindrical coordinates for the shell with the 
fiber laying angle θ±  are given by (16)  
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Here 1E , 2E , 1ν , 2ν  are the elastic parameters (principal directions). 
Frequency-dependent elastic modulus and loss factor of the matrix can be derived from rheological 

two-element Kelvin–Voigt model:     

)1/()1()( 1,,2,,
2

1,,
0* +++= fffEfE lEtEtEmm τττ  

)1/()1()( 1,,2,,
2

1,,
0* +++= ffff lttmm ηηη τττηη  

 

where  0
mE , 0

mη  are values of elastic modulus and loss factor at 0 Hz; f  is the frequency; τ  is the 

parameter. Losses is taken in consideration as complex elastic modulus (17) 
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2.1 Longitudinal wave propagation 
Longitudinal vibration can be described by following equation (12) 
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wall thickness; R  is the internal radius; sρ , fρ are the densities of shell and fluid; fc  is the 
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velocity of sound in fluid; ω is the angular frequency. 
The solution of equation (2) is 
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Impedance matrix elements related with longitudinal vibrations with regard for boundary 
conditions are given by  
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23
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23

33 λρωλµ fA−= ; xm is the mass of the flange without fluid; l  is the 

length of elastic part of the hose. 

2.2 Transverse wave propagation 
Transverse vibration can be given by following equation: 
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where eρ is the effective density; yI is the moment of inertia of shell cross-section; S is the area of 

shell cross-section; χ is the shear coefficient. 
Effective density is given by  
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According to (18) shear coefficient of orthotropic beam with ring cross-section is given by 
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The solution of equation (3) is  
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Two waves propagate in the beam described by equation (3), but the second wave is 
inhomogeneous in low-frequency region. Wavenumber of the first wave is given by  
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Impedance matrix elements related with transverse vibrations are given by  
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  1l is the length of the flange; ym is the mass of the flange. 
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  yJ  is the moment of inertia of the flange. 

2.3 Torsional wave propagation 
Coloumb, Saint-Venant and Timoshenko beam theories give the same results for the ring 

cross-section (19). Therefore technical theory of rod is used to describe torsional vibration. 
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where xI  is the moment of inertia; xJ  is the moment of inertia of flange without fluid. 

3. EXPERIMENTS 
To verify the analytical model, numerical results were compared with experimental data. The 

parameters of the test hose are shown in Table 1. 

Table 1 – Parameters of hose 

Parameter Value Parameter Value 

11B , Pa 1.64·108 
xm , kg 20.6 

22B , Pa 4.2·108 
ym , kg 21.8 

12B , Pa 2.54·108 l , m 0.7 

66B , Pa 2.52·108 
1l , m 0.15 

sρ , kg/m3 1166 xJ , kg·m2 0.109 

fρ , kg/m3 1000 yJ , kg·m2 0.085 

fc , m/s 1400 0
mE , Pa 1·107 

h , m 0.009 0
mη  0.19 

R , m 0.05 1,,tEτ ; 1,,tEτ ; 1,,lEτ  1.64·10-6; 0.012; 0.0082 

  1,,tητ ; 2,,tητ ; 1,,lητ  3.5·10-5; 0.1; 0.11 

 
Measurements were performed using the method described in (13). Comparison of the measured 

data and numerical results is shown in Fig. 2. 
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Figure 2 – Impedance matrix of straight pipeline section 
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4. CONCLUSIONS 
One-dimensional model of the fluid-filled hose taking into account fluid-structure interaction, 

viscoelastic and orthotropic properties is introduced. Analytical expressions for elements of the 
impedance matrix based on this model are obtained. Comparison shows good agreement between 
experimental data and numerical predictions. 
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