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ABSTRACT 

To perform active noise control it is necessary to establish sensors locations, knowing that the error sensors 

should be placed near to areas that we want to reduce the noise. It´s quite inconvenient the need of positioning 

the error sensor in the center of a room, or in walking areas, or near of the observer's ears, so, It has been 

investigated a new method, that does a virtual detection from the physical sensors. In this paper we 

investigate the remote responses obtained in a reverberant room, from a generated harmonic signal. The 

acoustic emission is characterized from one vibrational sensor and it is used artificial neural networks to 

estimate a virtual detection response. Was compared and investigated: the neural network architecture, the 

usage of reference signals, influences due to environment changes, operating condition changes and noises 

from other sources. Frequency responses in magnitude and phase were also evaluated and compared. It has 

been investigated ways to accomplish the system identification, and the evaluation of the answers accuracy 

when there are changes in the dynamics of propagation. 
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1. INTRODUCTION 

The active noise control (ANC) is an attractive approach to get noise reduction at low frequencies, 

creating a quiet zone at a determined location or even to get global noise reduction. However it is 

difficult to find the best location for the system due to a large amount of possible combinations, 

environmental variations, tridimensional propagation, alterations on the operational conditions and 

influence from other sources. 

Another inconvenient is that the error sensors must be placed near the areas where noise should be 

reduced. It can be quite difficult the need to put sensors at the center of a room or next to observer’s 

ears. Thus, the challenge turns in create a quiet zone surrounding the destination points, without 

putting any physical sensor in these locations. One method that has been investigated is the virtual 

detection from the physical sensors, placed near the objective of control. 

The technique of virtual detection consists in putting the physical sensors in possible place. From 

those physic sensors, the signals are acquired, processed and must be equivalent to the signal in those 

desired location. Such technique provides improvements over traditional ANC, bypassing the physical 

constraints encountered in the field. 

To establish the virtual microphone, are necessary the systems models or transfers functions to 

process the data sets from the real sensors. This way, the precision of the model is crucial. Wilson 

(1997) had proposed the use of artificial neural network (ANN) to model a system. 

Many algorithms for virtual detection have been searched on the last years. The method of the 

virtual microphone proposed by Elliott and David (1992), used a primary sound field to predict the 

sound pressure in a short distance from a real microphone. It was supposed that the sound pressure 

                                                        
1
 mabcbadan@gmail.com 

2
 mvduarte@mecanica.ufu.br 

3
 mojao1@hotmail.com 

4
 pedronishida@gmail.com 



Page 2 of 9  Inter-noise 2014 

Page 2 of 9  Inter-noise 2014 

would be the same for physic and virtual microphones. 

Roure and Albarrazin (1999) had used the concept of remote microphone technique to get a set of 

transfer functions without the need to assume the sound field for physical and virtual microphones. 

The technique for future estimation, based on polynomial extrapolation of acoustics signals was 

applied and afterwards it was extended using the LMS (Least Mean Square) in one type of adaptive 

algorithm, to get the ideal weights for the extrapolation (MUNN et. al.; 2002), (CAZZOLATO; 2002). 

Petersen et al. (2006, 2007) investigated the movement of virtual sensor using active control system 

to get local attenuation. They were able to generate a silent zone that could move, following the 

observer’s ear. 

Moreau et al. (2008) studied the performance of a virtual microphone system that accompany the 

head spin movement in a tridimensional field. As a result, there was attenuation improvement 

compared with the static or fixed position of the virtual microphone. Based on the estimation of the 

ideal state, Petersen et al. (2008) used the Kalman filter to design the virtual sensor applied to active 

noise control. Also, there was the study of virtual sensing in the diffuse field. (MOREAU et al., 2009). 

Das et al. (2010, 2013) presented applications of the FSLMS nonlinear algorithm, for virtual 

microphone. Some of the nonlinear algorithms commonly used in active control are FXLMS 

(Filtered-x Least Mean Square), FSLMS (Filtered-s Least Mean Square) and NARX (Nonlinear 

autoregressive exogenous model). 

As advantages, the development of virtual detection techniques: A better efficiency in the noise 

attenuation when compared with the positioning of a real microphone, and also, the possibility to 

promote the microphone displacement from its virtual location, in order to follow small movements of 

the receiver such as the head spin, maintaining the efficiency on the sound attenuation. (PETERSEN et 

al.; 2006, 2007), (MUREAU et al.; 2008). 

2. METHODOLOGY AND MODELING 

2.1 Experimental Setup 

Aiming to investigate virtual sensing applications in active noise control, it was generated an 

harmonic signal at frequency of 160 Hz in a woofer that is a kind of speaker, placed at the bottom 

corner of an empty room with dimensions: 4841 x 4023 mm
2
 and 2465 mm tall. The acquisition of 

responses was taken in 4 physical positions in rate of 0 a 719 Hz, using 16384 points and cut frequency 

at 700 Hz. The figure 1 illustrates the block diagram from generation set until signals acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Block diagram from the generation set until the signals acquisition. 

 

An accelerometer was attached on the speaker membrane to characterize acoustic field of 

vibrational signal. The microphone 1 measures acoustic signal next the speaker while the microphones 

2 and 3 measure the signal from reverberant field. The microphone 3 was used to compare and to 

estimate the virtual response. The microphone 2 was positioned between microphones 1 and 3 at 

distance of 450 mm from microphone 3. 
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2.2 Network Architectures 

To define the network architecture, were designed static neural networks, time delay and recurrent 

neural networks. At first step, were defined neural networks with 2 and 3 hidden layers, 10 and 20 

neurons on the input layer, 4 position delay, activation functions “tansig” and “purelin”, 01 or 02 

signals as input and 500 interactions as maximum epoch. Each set used on training was composed by 

53000 data points. 

For static neural networks, we have been defined: Feedforward (FF) and Cascade Feedforward 

(CFF). The main characteristics for these neural networks are their capability to adapt to any function 

with a finite number of discontinuities, since that there be an enough number of neurons in the hidden 

layers, so, these networks are quite used as an universal approximator of functions. (FONSECA, 

2013). 

For dynamics neural networks, with time delay and feedback characteristics, it was defined: 

Focused Time Delay (FTD), Distributed Time Delay (DTD), Layer Recurrent (LR) and Nonlinear 

Autoregressive Network with Exogenous Inputs (NARX). 

The NARX neural networks have feedback connections between layers in architectures based on 

autoregressive models. A regression model as ARMAX type, can be defined as an extension of a linear 

model. Equations (1) and (2) represent a model with one input and one output. 

 
��. ���� + �	. ��� − 1� +⋯+ � . ��� − ��= ��. ���� + �	. ��� − 1� +⋯+�� . ��� − �� (1) 

 ���� = 1�� ����
�
��� ��� − �� −����

��	 ��� − ��� (2) 

This kind of model implies that actual output ���� is given as a weighted sum of past values of 

output and exogenous values from the input ����. In Eq. (1), the terms ����,… , ��� − ��	, ��� −1�,… , ��� − �� are the input variables and the lagged outputs, called regressors. In this way, the actual 

output ���� on ARX model is the weighted sum of its regressors. This linear structure can be 

extended to create the nonlinear form called (NARX): 

 ���� =  !����, ��� − 1�,… , ��� − ��	, ��� − 1�, ��� − 2�,… , ��� − ��# (3) 

Where the function   is a nonlinear function in which the inputs are regressors of the model. It is 

also possible that there be delayed inputs and outputs. 

2.3 Selection of the Neural Network 

To select the best neural network based on performance and low computational cost, were 

considered changes in the number of neurons, number of hidden layers and input signals, where could 

be observed: 

• The Feedforward (FF) and Cascade Feedforward (CFF) neural networks present the worst 

performance, compared with the other architectures, when using the same settings for training. 

• There was no significative improvement at performance when increasing the number of 

neurons. Curves (1) and (5) in graph of figure 2. 

• There was no significative improvement at performance when increasing the number of hidden 

layers. Curves (3) and (4) in graph of figure 2. 

• The use of microphone (Mic1) as input signal provides a better estimate than using 

accelerometer as input signal. See curve (2) compared with curves (1) and (5) in the graph of 

figure 2. This is due to higher microphone sensibility to background noise and due to the 

reverberant field in the room. The accelerometer is more sensitive to vibrational field of source. 

• The better results were obtained when using the accelerometer and microphone (Mic1) as input 

signals. Curve (3) in the graph of figure 2. 

• In all configurations, the Layer Recurrent (LR) neural network, present good results on 

performance. However these networks present high computational cost. 
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Figure 2 – Comparative graph between performances by the neural networks. 

 

Thus, neural networks with Focused Time Delay (FTD) and Nonlinear Autoregressive Network 

with Exogenous Inputs (NARX) provided the best results. When performing a more refined study 

among these networks, can be noticed that the NARK neural network has the best performance and the 

configuration with 03 neurons, has shown to be a good choice for this architecture. 

Figure 3 – (a) Performance when changing the number of neurons 

(b) Performance when changing time delay for NARX neural network. 

3. RESULTS 

3.1 Virtual response in a closed room 

Were considered signal generation and signal acquisition at 06 levels of amplitude (24, 26, 28, 30, 

32, 34V) adjusted on the DS360 Generator, in an empty room with closed doors, in the frequency of 

160 Hz. For the neural network training, were provided 196608 sets and configured 06 NARX neural 

networks: (A)x03x1, (M1)x03x1, (M2)x03x1, (A+M1)x03x1, (A+M2)x03x1, (A+M1+M2)x03x1 

For evaluate the estimative of response were used three sets of data: 

a) Case 1 - Amplitude of 25 V obtained in an empty room with closed doors. 

b) Case 2 - Amplitude of 28 and 32 V obtained in an empty room with opened doors. 

c) Case 3 - Amplitude of 26 and 30 V performing movements into the room, opening and closing 

door and curtains. 

These sets weren´t presented previously for neural network training. The figures 4 and 5 illustrate 

the estimated responses by the (A+M2)x03x1 neural network. OBS: The labels RNA in the following 

figures illustrate the estimated signals by NARX Neural Networks. 
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Figure 4 – Comparation among the real and estimated response: 

(a) Time signals. (b) Auto spectrum: Generated signal, real signal and estimated signal. 

 

Although there are differences in the time and the frequency spectrum of magnitude signals, it can 

be notice in figure 4 that the error of cases 1, 2 and 3 were in 0.06%, 1.48% and 0.53% respectively. 
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Figure 5 – Comparation among the real and estimated response: 

(a) Magnitude of FRF (b) Phase and coherence among signals. 

 

In the figure 5, can be observed that the magnitude of the FRFs, the error stays in 0.51%, 16.44% 

and 4.37% for the cases 1, 2 and 3. In the phase, the estimated error was in 5.55%, 3.19% and 11.15% 

for the three cases respectively. Also, it can be noticed that the coherence remains in 96.65%. 

3.2 Virtual response in a opened room 

At this step, was remained the signal generation and signal acquisition at the 06 levels of amplitude 

(24, 26, 28, 30, 32, 34V) and in the frequency of 160 Hz used before, nevertheless, the doors were open 

to change the reverberation level of the room. The strategies of retraining, reset and reinforcement 

were defined for a new training of the neural networks. For the retrain, was maintained the training 

done in the previous step and it was brought the new data set obtained in this step. For reset, we 
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presented the data sets from both steps to start a new training. For reinforcement, was kept the training 

of the first step and was presented, all the entire data set obtained in steps 1 and 2. 

Obviously, the better results, occurs to the cases 1 and 2 due to the data from both set, presented for 

training. However, to evaluate the strategy used to training (retraining, reset and reinforcement), 

observed that the strategy of reset showed the smaller errors (mean square) and the smaller 

computational costs. 

The figures 6 and 7 illustrated the estimated responses by (A+M2)x03x1 neural network, using the 

strategy of reset for the training. 

  

  

  

Figure 6 – Comparation among the real and estimated response: 

(a) Time signals. (b) Auto spectrum: Generated signal, real signal and estimated signal. 

 

It can be noticed in figure 6, that the error in the auto spectrum of cases 1, 2 and 3 were in 0.07%, 

0.14% and 0.32% respectively. There was a global improvement compared to figure 4. 
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Figure 7 – Comparation among the real and estimated response: 

(a) Magnitude of FRF (b) Phase and coherence among signals. 

 

In the figure 7, can be observed that the magnitude of the FRFs, the error stays in 0.74%, 1.34% and 

3.28% for the cases 1, 2 and 3. In the phase, the estimated error was reduced to 2.62%, 0.56% and 

10.03% for the three cases respectively. At general, there was improvement compared with figure 5, 

including coherence elevation for case 3. 

4. CONCLUSIONS 

The accelerometer sensor attached at the source is able to estimate the sound pressure produced in 

terms of magnitude and phase, with the advantage of measuring directly the source. It also has the 

advantage of being robust of interference at the reverberant field in the acquisition. 
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It is also observed that the accelerometer characterizes very well the signal from neural network, 

doing the filtering of the disturbances due to noise and from the reverberant field. Nevertheless, 

putting one microphone next the virtual location, it is possible to characterize those disturbances. Thus, 

the fidelity of signals will be directly affected by the amount of data sets presented for neural network 

on training, by the quantity of sensors and its locations. 

The virtual response was quite representative, showing low error in magnitude, phase and high 

coherence of FRFs. Also, can be noticed that the estimate gets improvements when increases the 

number of data sets incorporating characteristics of environment changes, using the reset strategy to 

training. 

Finally, can be concluded that the technique of virtual response is quite promising, to get estimative 

of acoustic signal. Although it was used a harmonic signal to perform this study, was possible to reach 

the proposed goals. 
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