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ABSTRACT
Damping material is usually applied on the steel panel of a vehicle to reduce vibration level. On the other
hand, the weight reduction is also required to improve fuel consumption. Therefore, modal loss factors in-
duced by damping material on the steel panel of a vehicle body structure need to be maximized with a given
volume. In this paper we propose a practical design method to maximize modal loss factors by optimizing the
material distribution of damping material under a prescribed volume constraint. The modal loss factor of an
eigensmode can be written as the ratio of the strain energy stored in the damping material over the total strain
energy in the system under consideration. In the proposed method, we assume the eigenvectors are almost the
same as the eigenvectors when damping material is removed. The modal loss factor can then be expressed
by using a corresponding eigenvalue where the mass density of the damping material is ignored whereas the
stiffness is taken into account. Several numerical examples are provided to show the optimal distributions of
the damping material by using a flat panel. Damping material is distributed in the domain where the strain en-
ergy is stored, which agrees well with our experiences. Moreover, by applying a sensitivity filter that utilizes
a weighted average of design sensitivities over local area, damping material can be distributed collectively in
a single domain to meet practical requirements for manufacturing,
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1. INTRODUCTION
Annoying noise in a passenger compartment of a vehicle must be reduced to make passengers comfortable

during driving a vehicle. Noise in the passenger compartment is mainly generated by the vibration of thin
panels surrounding acoustic cavity in the compartment. Vibration damping material is applied on thin panels
of automotive body structure, which is one of the common design methodologies to suppress vibration of thin
panels. At the same time, the weight of a vehicle is also must be reduced to improve fuel economy that is
one of the most essential environmental performance. To meet both of the requirements for performance and
weight discussed above, the vibration reduction by a given amount of damping material should be maximized.

Several design methods to optimize the layout of damping sheets have been proposed to reduce the forced
response level of thin panels. Yuge et al. (1) proposed an algorithm to find an optimal layout of damping
material on a vibrating surface to minimize dynamic mean compliance or square of displacement by using
topology optimization based on a homogenization method Kang et al. (2) investigated the optimal distribution
of damping material in vibrating structures subject to harmonic excitations by using topology optimization
method to minimize the structural vibration level at specified positions with a given amount of damping
material. Zheng et al. (3) presented an optimization study to minimize the vibrational energy of beams with
passive constrained layer damping treatment. Lassila et al. (4) found the optimal damping set of a two-
dimensional membrane such that the energy of the membrane is minimized at some fixed end by using shape
optimization scheme based on level set methods.

Damping material should suppress the spectrum level at resonance frequency by increasing damping char-
acteristics of a system of interest. The objective function is basically based on vibration displacement in the
prescribed frequency range in the design methods mentioned above. Vibration displacement can be reduced
by increasing the stiffness or the weight of the system of interest. If damping material works as a stiffener or
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an additional mass, the vibration displacement level can not be considerably reduced and it does not be ap-
plied efficiently in terms of weight. Moreover, frequency resolution must be fine enough to calculate/predict
response level at resonance frequencies otherwise, iterative calculation in optimization process can not be
stable. Fine frequency resolution leads to the increasing number of frequency response analysis and takes
much calculation time.

Another property is modal loss factors to evaluate damping characteristics of a system of interest. Modal
loss factors can be takes as objective function to be maximized in the optimization of layout of damping
material. Modal loss factors can be calculated exactly by complex eigenmode analysis. However, it usually
takes a long time as degrees of freedoms of a finite elemental model increase. Therefore, the application of
complex eigenmode analysis is limited to a FE model with small degrees of freedoms. Consequently, modal
strain energy (MSE) method is widely applied to estimate modal loss factors approximately by assuming that
complex eigenvectors can be approximately identical with real eigenmode vectors when damping property
of a system of interest is ignored (5, 6). In MSE method, modal loss factors are obtained by the loss factor
of a damping material multiplied by a ratio of modal strain energy stored in damping material to total modal
strain energy. Ling et. al (7) proposed a design method of damping material by maximizing modal loss factors
calculated by MSE method. However, in the method modal strain energy in each element has to be summed
up over the domain of damping material. Moreover, the summation of modal strain energy is not calculated
in general eigenvalue analysis code, and some user subroutine for the summation has to be added.

Therefore, in the study presented here, we propose an approximate but a practical formulation to predict
modal loss factors by using only real eigenvalues assuming that eigenvectors does not change much when
damping material is applied on a steel panel. We also propose a optimal design method for the distribution
of damping material to maximize modal loss factors obtained by the approximate method proposed here.
The remainder of this paper is organized as follows: Section 2 develops a new formulation to evaluate modal
loss factors by using only real eigenvalues. In Section 3, we propose a topology optimization method for the
layout of damping material on thin steel panels to maximize modal loss factors. Several design examples are
presented in Section 4 to demonstrate that the proposed method can provide optimal distribution for damping
material. The final section summarizes the results and provides conclusions.

2. MODAL LOSS FACTORS OF A STRCUTURE WITH DAMPING MATERIAL
In this study, damping material is supposed to be applied on thin steel panels such as body structure of a

vehicle and eigenvalues of the system of interest are calculated by finite element analysis.

2.1 Modal strain energy method
We briefly explain about modal strain energy method here. Governing equation for complex eigenvalue

analysis is written as

λiMMMφφφ i = KKKφφφ i , (1)

whereKKK and MMM are stiffness matrix and mass matrix, respectively, andλi and φφφ i are i-th order complex
eigenvalue and complex right eigenvector. This equation can be written as

λ R
i (1+ jηi)MMMφφφ i = KKKφφφ i , (2)

whereλ R
i is real part ofλi , ηi is i-th modal loss factor, andj is imaginary unit. Whenφφφ i is assumed to be

approximately represented by real eigenmodeφφφR
i , andφφφR

i is multiplied from left side, the equation is rewritten
as

λ R
i (1+ jηi)(φφφR

i )
TMMMφφφR

i ≈ (φφφR
i )

T(KKKR+ jKKKI )φφφR
i , (3)

whereKKKR andKKKI are real part and imaginary part of complex stiffness matrixKKK. By comparing real and
imaginary part of both side of the equation, modal loss factorηi is given as

ηi =
(φφφR

i )
TKKKI φφφR

i

(φφφR
i )

TKKKRφφφR
i

. (4)

Whennd is the number of damping material applied andηs (s= 1,2, · · · ,nd) is loss factor of damping material

s, imaginary part of stiffness matrixKKKI is expressed asKKKI =
nd

∑
s=1

ηsKKK
R
s . Substituting this expression in Eq. (3),
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modal loss factorηi can be written as

ηi =
nd

∑
s=1

ηsξsi, (5)

whereξsi is the ratio of modal strain energy stored in damping material to total modal strain energy for
damping materials, and defined asξsi = (φφφR

i )
TKKKR

s φφφR
i /(φφφ

R
i )

TKKKRφφφR
i .

2.2 Modal loss factors by real eigenvalues
ξsi is not calculated by general eigenvalue solvers. Accordingly, a user-subroutine has to be coded. There-

fore ,in the study presented here, we have developed a new approximate formulation to estimate modal loss
factors by using only real eigenvalues.

Mass and stiffness matrix of a system including damping material are expressed respectively as

MMM = MMMp+
nd

∑
s=1

MMMd
s , (6)

KKK = KKKp+
nd

∑
s=1

KKKd
s + j

nd

∑
s=1

ηsKKK
d
s , (7)

whereMMMp andKKKp are mass and stiffness matrix of thin steel panel, respectively.MMMd
s andKKKd

s are mass matrix
and real part of stiffness matrix of damping materials, respectively. Damping characteristics of thin steel
panel is supposed to be ignored since it is usually much smaller than that of damping material.

Now we assumeφφφ i is approximately represented by real eigenmodeφφφR
i as discussed in the previous

section. By multiplyingφφφR
i from left side of Eq. (3), the equation is then written as

λ R
i (1+ jηi)(φφφR

i )
T(MMMp+MMMd)φφφR

i = (φφφR
i )

T(KKKp+KKKd + j
nd

∑
s=1

ηsKKK
d
s)φφφ

R
i . (8)

HereMMMd andKKKd are defined asMMMd =
nd

∑
s=1

MMMd
s andKKKd =

nd

∑
s=1

KKKd
s , respectively. By comparing real part and

imaginary part for both side of the equation,i-th modal loss factorηi is given by

ηi =

(φφφR
i )

T
nd

∑
s=1

ηsKKK
d
sφφφR

i

(φφφR
i )

T(KKKp+KKKd)φφφR
i

. (9)

This equation can be rewritten as

ηi =
nd

∑
s=1

ηs

1−
(φφφR

i )
T(KKKp+

nd

∑
t=1,t ̸=s

KKKd
t )φφφ

R
i

(φφφR
i )

T(KKKp+KKKd
s +

nd

∑
t=1,t ̸=s

KKKd
t )φφφ

R
i

=
nd

∑
s=1

ηs

(
1−

1+ εd
t

1+ εd
s + εd

t

)
, (10)

whereεd
s andεd

t are defined asεd
s = (φφφR

i )
TKKKd

sφφφR
i /(φφφ

R
i )

TKKKpφφφR
i ，εd

t =
nd

∑
t=1,t ̸=s

(φφφR
i )

TKKKd
t φφφR

i /(φφφ
R
i )

TKKKpφφφR
i , re-

spectively. Since steel panel is generally much stiffer than damping material,εd
s εd

t can be negligible compared
with 1, εd

s andεd
t . Modal loss factorηi is then approximately expressed as follows:

ηi ≈
nd

∑
s=1

ηs

(
1−

1+ εd
t

(1+ εd
s )(1+ εd

t )

)
=

nd

∑
s=1

ηs

(
1−

1

1+ εd
s

)
=

nd

∑
s=1

ηs

(
1−

(φφφR
i )

TKKKpφφφR
i

(φφφR
i )

T(KKKp+KKKd
s)φφφ

R
i

)
(11)

We have to note that the approximation in the equation above is exactly correct when only one damping
material is applied becauseεd

t becomes zero fornd = 1.
Now we consider thei-th real eigenmodeφφφ p

i when damping materials are removed, and thei-th real
eigenmodeφφφd

si when damping materials with zero mass density is applied on thin steel panel. Then,φφφ p
i and
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φφφd
si satisfy the following eigen equation, respectively:

λ p
i (φφφ

p
i )

TMMMpφφφ p
i = (φφφ p

i )
TKKKpφφφ p

i , (12)

λ d
si(φφφ

d
si)

TMMMpφφφd
si = (φφφd

si)
T(KKKp+KKKd

s)φφφ
d
si, (13)

whereλ p
i andλ d

si are corresponding real eigenvalues as: When bothφφφ p
i andφφφd

si are expressed approximately
by real eigenmodeφφφR

i , Eqs. (??) and (??) can be written, respectively, as:

λ p
i (φφφ

R
i )

TMMMpφφφR
i ≈ (φφφR

i )
TKKKpφφφR

i , (14)

λ d
si(φφφ

R
i )

TMMMpφφφR
i ≈ (φφφR

i )
T(KKKp+KKKd

s)φφφ
R
i . (15)

Substituting these relationships to Eqs. (11), we finally obtain the approximate formulation ofηi expressed
by the eigenvalues ofλ p

i andλ d
si:

ηi ≈
nd

∑
s=1

ηs

(
1−

λ p
i

λ d
si

)
. (16)

As expected from Eqn. (11), (14) and (15), the approximate accuracy is getting worse as the stiffness or
the thickness of damping material becomes large. However, the approximation can be valid practically as
demonstrated in Section 4.

3. MAXIMIZATION OF MODAL LOSS FACTORS BY TOPOLOGY OPTIMIZATION
OF DAMPING MATERIAL

3.1 Density method
The key idea of topology optimization is the introduction of a fixed extended design domainΩD that

includes the original design domainΩd and the utilization of the characteristic functionχ defined as

χ(xxx) =

{
1 (xxx∈ Ωd)

0 (xxx∈ ΩD\Ωd)
, (17)

wherexxx denotes a position in the extended design domain. This function signifies that material exists at
locations whereχ(xxx) = 1 and does not exist at locations whereχ(xxx) = 0. Using this function, the topology
optimization problem is defined in terms of finding the optimal distribution of the functionχ(xxx) under several
constraints including equilibrium equations. Since the characteristic functionχ(xxx) has a binary value at every
position in the domainΩD, an infinite number of discontinuities may appear in the design domain, which
makes practical solutions impossible. To avoid such difficulties, the binary characteristic functionχ(xxx) must
be relaxed to a continuous functionµ(xxx) that takes a real value between 0 and 1. In this study, we adopted
the density method () for relaxation of the characteristic function due to its simplicity of formulation and im-
plementation in numerical programs. In the density method, material characteristics are simply interpolated
using a continuous density function that is regarded as a design variable. The solid isotropic material with pe-
nalization (SIMP) model is widely applied for optimization of elastic structures. The elasticity tensorE0

i jkl (xxx)
is interpolated using a simple exponential expression of a design variableµ(xxx) that takes a value between 0
and 1 as follows:

Ed
i jkl (xxx) = µq(xxx)E0

i jkl , (18)

where the exponential indexq represents penalization powers andE0
i jkl is the elasticity tensor of the material

used. Volume of the material in the extended design domainV is supposed to be proportional to the design
variableµ(xxx) and expressed by

V =
∫

ΩD
µ(xxx)dΩ. (19)
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3.2 Maximization of modal loss factors
In order to maximizei-th modal loss factorηi , its negative value should be minimized under a prescribed

volume constraint. We can formulate the optimization problem as follows:

Minimize F =−ηi ,

Subject toEigenvalue equation,∫
ΩD

µ(xxx)dΩ ≤V0, (20)

0< µmin ≤ µ(xxx)≤ 1,

whereV0 is the upper bound of the volume constraint for the damping material applied andµmin is a small
positive value for the lower bound of the design variables set to avoid numerical instabilities. Eigenvalue
equation is given by (

KKKR−λ R
i MMM
)

φφφR
i = OOO, (21)

when modal loss factors are evaluated by MSE method, and is given by(
KKKp+KKKd

s −λ d
siMMM

p
)

φφφd
si = OOO, (s= 1, · · · ,nd), (22)

when modal loss factors are evaluated by real eigenvalues.
For maximization of multiple modal loss factors simultaneously, a linear weighted summation of the

negative valuesηi can be minimized. The objective function is taken as follows：

Minimize F = ∑
i
−βiηi (23)

whereβi is a prescribed positive value to account for the degree of the contribution ofi-th mode to the
objective function.

3.3 Discretization by continuous approximation of material distribution
The optimization problem in Eq. (??) can be solved numerically by discretizing the design variables.

Considering the relaxation of the solution space from a binary functionχ(xxx) to a continuous functionµ(xxx),
the material distribution should also be continuous over the design domainΩD, and this condition must hold
true even after the discretization. When the relaxed optimization problem is solved in conjunction with a
finite element analysis for solving the equilibrium equations, the design variables are usually discretized
using finite element meshes prepared for the purpose of solving equilibrium equations. If the design variables
are assigned to elements, they are usually set to piecewise constant values within each element. Sufficiently
fine discretization is required in this setting, because a continuous material distribution is assumed through
the relaxation of the solution space. However, using a such fine mesh may exceed the bounds of practical
calculation resources. Furthermore, as pointed out by Sigmund and Petersson (8), numerical instabilities such
as checkerboard patterns and mesh-dependencies also occur. To mitigate these numerical problems, several
methods have been proposed such as filtering schemes by Sigmund (9), perimeter control by Haber (10), and
the use of a local gradient constraint by Niordson (11). However, trial-and-error processes may be required
in the above schemes to define appropriate bounds for the perimeter or gradient.

To overcome such problems, Matsui and Terada (12), and Rahmatalla and Swan (13) proposed that dis-
cretized design variables should be assigned to the nodes of the elements and interpolated by a continuous
function within each element. This method ensures at leastC0 continuity of the design variables over the
design domain, even if the adopted finite element mesh is not fine. Now, we can approximately express the
design variableµi(xxx) by the following discretized formulation using the vectorsNNNt and µµµ i composed of
interpolation functionsNt j and nodal design variablesµi j , respectively:

µi(xxx)≃ NNNT
t µµµ i =

nd

∑
j=1

Nt j µi j , (24)

wherend is the number of design variables. In this study, the bi-linear interpolation function is applied for
Nt j due to its simplicity when quadrilateral elements are used. Consequently, the design variableµi(xxx) can
preserveC0 continuity throughout the design domain due to the partition-of-unity property.
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3.4 Design sensitivities
When modal loss factors are calculated by MSE method, the design sensitivity ofηi with respect to design

variableµ j are given by

∂ηi

∂ µ j
=

∂ fi
∂ µ j

gi − fi
∂gi

∂ µ j

g2
i

, (25)

where fi = (φφφR
i )

TKKKI φφφR
i and,gi = (φφφR

i )
TKKKRφφφR

i . Sensitivities offi andgi with respect toµ j are written as

∂ fi
∂ µ j

= (φφφR
i )

T ∂KKKI

∂ µ j
φφφR

i +2(φφφR
i )

TKKKI ∂φφφR
i

∂ µ j
, (26)

∂gi

∂ µ j
= (φφφR

i )
T ∂KKKR

∂ µ j
φφφR

i +2(φφφR
i )

TKKKR∂φφφR
i

∂ µ j
. (27)

The design sensitivity ofφφφR with respect to design variableµ j can be calculated by a method proposed by
Nelson (14).

When modal loss factors are calculated by the method proposed in this study, the design sensitivity ofηi
with respect to design variableµ j are given by

∂ηi

∂ µ j
≈

nd

∑
s=1

−ηs
λ p

i

(λ d
si)

2

∂λ d
si

∂ µ j
. (28)

The design sensitivity of eigenvaluesλ d
si with respect toµ j ca be derived by differentiating the eigen equation(

KKKp+KKKd
s −λ d

siMMM
p
)

φφφd
si = OOO and is written as

∂λ d
si

∂ µ j
=

(φφφd
si)

T ∂KKKd
s

∂ µ j
φφφd

si

(φφφd
si)

TMMMpφφφd
si

. (29)

The design sensitivity of effective volume in the extended design domainV with respect toµ j is given by

∂V
∂ µ j

=
∫

ΩD

∂ µ
∂ µ j

dΩ. (30)

3.5 Design sensitivity filter
In topology optimization for minimizing mean compliance of an elastic structure, various filters have been

proposed to avoid mesh dependencies that fine discretization of design domain gives different topologies
(8, 15, 16)．

A local filter that is proposed by Sigmund (8) and is widely applied in many topology optimization prob-
lems modifies design sensitivity at nodei by averaging design sensitivities at nodej in a neighborhood
domain with a weighting function of distance between nodei and nodej:

∂̂ηi

∂ µ j
=

1
N

∑
k=1

(R− r jk)µk

N

∑
k=1

∂ηi

∂ µk
(R− r jk)µk, r jk < R (31)

whereR is radius of the local filter,r jk is the distance between nodei and nodej, andN is the number of nodes

inside radiusR. WhenR is smaller than element size,̂
∂ηi

∂ µ j
is identical to the original design sensitivity

∂ηi

∂ µ j
.

Although this filter is purely heuristic and is not proved mathematically, it has generated mesh-independent
optimal solutions in many optimization problems.

3.6 Algorithm of optimization process
An optimization algorithm to solve the problem defined in Eq. (20) is explained in the flowchart shown in

Fig. 1.
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Figure 1 – Flowchart of optimization process

In the beginning of the optimization calculation, the design variableµµµ is initialized to a prescribed value.
It consists of five steps in an iteration loop. In the first step of the iteration countk, the elasticity tensor of

the damping material is calculated by using the design variableµµµk and Eq.(18), and the eigenvalues and the
eigenvectors for the system of interest are calculated by finite element method. In the second step, the mode
tracking based on Modal Assurance Criterion (MAC) is conducted and the eigenvectors that coincide with
the prescribed eigenvectors to be suppressed are identified. The objective functionF of the corresponding
eigenvalues and the volumeV of damping material in the extended design domain are then calculated. If the
objective function converges, the optimal material distribution is obtained and the iteration of the optimization
calculation terminates. Otherwise the design sensitivity of the objective function and the design sensitivity of
the volume with respect to the design variablesµµµk are computed in the third step. In the final step, the design
variables are updated using Method of Moving Asymptotes (MMA)(17). Then the optimization calculation
goes back to the first step and the iteration count is incremented by 1. These procedures are iterated until the
objective function converges.

4. NUMERICAL VERIFICATION
In this section, to verify the methodology described above, modal loss factors calculated by the proposed

method by using only real eigenvalues are compared with those by the conventional MSE method. Then
the optimal layout of damping material on a steel flat panel to maximize the modal loss factor for prescribed
eigenmodes is compared with strain energy distribution of the panel, which is conventionally utilized to define
the layout of damping material.

4.1 Verification of modal loss factors by real eigenvalues
Figure2 shows a finite element model of a thin flat steel panel with a damping material to be applied

for numerical verification. The panel has the size of 365 mm× 250 mm and the thickness of 0.8 mm with
all edges fixed, and is discritized by 72× 48 first order hexahedral elements. To avoid shear locking, a
bubble function is added for interpolation function of elements. Young’s modulus, Poisson’s ratio, mass
density and loss factor of the steel panel are 210 GPa, 0.29, 7860 kg/m3, and 0.00, respectively. Young’s
modulus, Poisson’s ratio, mass density and loss factor of the damping material are 1.00 GPa, 0.40, 1500
kg/m3, and 0.40, respectively. The damping material of the 2mm thickness is assumed to be applied on the
panel. Extended fixed design domain is defined where the damping material is allowed to be attached, and
the layout of the damping material is optimized by the proposed method.

A damping material is attached on the steel panel with uniform thickness, and modal loss factors calculated
by the proposed method are compared with those by the conventional MSE method. Table1 gives modal loss
factors for 1st to 5th eigenmode. The difference between these two values are less than 3%. Predictions by
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Figure 2 – Finite element model of flat panel with fixed design domain for damping material.

Table 1 – Comparisons of modal loss factors for uniform distributions of damping material by MSE method
and by the proposed method.

MSE Proposed Difference [%]
Mode 1 0.0988 0.1011 2.336
Mode 2 0.0995 0.1016 2.141
Mode 3 0.0985 0.1008 2.319
Mode 4 0.0998 0.1018 2.023
Mode 5 0.0986 0.1008 2.195

the proposed method can be practically valid to evaluate damping characteristics of panels.

4.2 Verification of optimized layout of damping material
The damping material is allowed to use by 50% of the volume of the fixed design domain. All the design

variables are initialized to 0.5 before starting the optimization process. The lower bound of design variables
is set to 1.0× 10−6 to avoid numerical instability.

We consider the optimal design of damping material to maximize the modal loss factor for 1st eigenmode.
Figure3 shows (a) displacement of panel at 1st eigenmode, (b) strain energy distribution of damping material,
(c) optimal distribution of damping material based on modal loss factor by MSE method, and (d) optimal
distribution of damping material based on modal loss factor by the proposed method. In the optimal design,
damping material distributes mainly where the strain energy is concentrated. This result agrees well with the
conventional design methodologies. Moreover, the optimal design of damping material shown in Fig.3(c) is
almost the same as one shown in Fig.3(d).

Modal loss factors for optimal distributions of damping material by MSE method and by the proposed
method are 0.0841 and 0.0866, respectively. The difference between them is less than 3%, which ensures that
the proposed method gives a practical approximated solution.

4.3 Practical design of damping material
As shown in Fig.3, the optimal distributions of damping material are separated into several domains.

However, in the manufacturing point of view, those distributions are not appropriate in terms of required
process and cost. Thus, the sensitivity filter defined in Eq. (31) is applied to obtain material distribution in a
single domain.

Figure4 presents the optimal material distributions to maximize modal loss factor for 1st eigenmode.
The radius of sensitivity filterR is varied as 0.05a, 0.10a and 0.20a. Damping material forms collectively as
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(a) (b) (c)

(d)

Figure 3 – (a) Displacement of panel at 1st eigenmode, (b) strain energy distribution of damping material, and
optimal distribution of damping material using the modal factor (c) by MSE method and (d) by the proposed
method.

(a)R= 0.05a (b) R= 0.10a (c) R= 0.20a

Figure 4 – Optimal distributions of damping material for 1st eigenmode with sensitivity filter.

the radius becomes large and is located in a single domain whenR equals 0.20a. Modal loss factors when
the radiusR is 0.05a, 0.10a and 0.20a are 0.0864, 0.0846 and 0.808, respectively. As expected, modal loss
factors become small as the radiusR is large. By applying a sensitivity filter that utilizes a weighted average
of design sensitivities over local area, damping material can be distributed collectively in a single domain to
meet practical requirements for manufacturing,

5. CONCLUSIONS
This paper proposes an optimization method to maximize modal loss factors by optimizing the layout of

damping material. In this method, the eigenvectors are assumed to be almost the same as the eigenvectors
when damping material is removed, and the modal loss factors can then be expressed by using a correspond-
ing eigenvalue where the mass density of the damping material is ignored whereas the stiffness is taken into
account. Moreover, by applying a sensitivity filter utilizing a weighted average of design sensitivities over lo-
cal area, damping material can be formed collectively in a single domain, which meets practical requirements
for manufacturing.
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