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ABSTRACT
With the increase of bypass ratios of current jet engines, the dominating sound emission sources of aircraft
engine noise consist of the tonal components of the fan and the compressor. Hence, the rotor-stator interaction
noise is a significant contributor to the overall sound radiation from aircraft engines. The sound field consists
of a superposition of various acoustical modes, generated by two effects: Firstly, the interaction of rotor
wakes with the stator in each compressor stage and secondly, the relative rotation of potential fields of the
cascades. Based on the blade and vane count and on the blade-passing frequency (BPF), the compressor modes
that propagate can be estimated. Since the excited modes determine the emitted sound field, the numerical
analysis of these acoustic structures is of great importance in understanding jet engine noise emissions. For
this purpose, the sponge-layer boundary condition of the CAA-solver PIANO (developed by the German
Aerospace Centre, DLR) is extended to implement arbitrary superposed modes. The FORTRAN-based code
computes the resulting sound field in a cylindrical geometry, for a given set of azimuthal and radial mode
orders, wavenumber and amplitudes of the modes to be excited. The numerically generated sound pressure
distribution is validated against an analytical solution.

NOMENCLATURE

Latin Letters

a speed of sound
A,B amplitudes of partial waves
C,D,E proportionality factors
Jm Bessel function of the first kind
k wavenumber
L length of sponge-layer
m azimuthal mode order
Ma Mach number
n radial mode order
p′ acoustic pressure
q acoustic source term
R outer duct radius
r,Θ,z cylindrical coordinates
u′,v′,w′ sound particle velocities
U0 uniform axial mean flow
um,n eigenwert of the Bessel function
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Greek Letters

αm,n modal axial wavenumber
βm,n modal radial wavenumber
γ exponent of fading function
λax axial wavelength
ω angular frequency
φ mode propagation angle in z−Θ plane
ρ density
ρ ′ acoustic density
ϕ state quantity
ξcut−o f f cut-off ratio

1. INTRODUCTION
The main contributors to the overall sound emission from aircraft engines have been displaced in the last

few years. Due to an increase of bypass ratio of modern turbojet engines, the jet velocity has diminished
(1). As a result, jet noise decreases as it is a function of jet exit velocity. Hence, noise components of the
fan and the core engine are now the main focus of attention in noise reduction. The tonal components of fan
and core engine noise are mainly produced by rotor-stator interaction. The generation of sound due to the
relative motion of rotors and stators to each other is based on two mechanisms (2). One effect can be described
as an interaction of wakes from blades, vanes or struts with the adjacent downstream vanes or blades. This
causes unsteady forces on the airfoils, which then induce sound sources on the blade/vane surface. The second
mechanism, the potential interaction, imposes unsteady forces due to the relative rotation of the lift distribution
of the blades/vanes with a finite thickness on the adjacent vane/blade rows. The described generation of
sound sources by rotor-stator interaction leads to rotating pressure patterns, so called spinning modes (3, 4).
These acoustical modes dominate the tonal sound emission from rotating turbomachinery. The first extensive
analysis of modes, generated by rotating cascades, is reported by Tyler and Sofrin (4). In their work they
derive a correlation between the number of vanes and blades, the shaft speed, and the generated azimuthal
modes. The propagation or decay of a mode depends on the excitation frequency, geometric dimensions, and
thermodynamic state.

In the last few years, several computational approaches have been developed to address the problem
of acoustic mode generation and propagation through turbomachinery. Özyörük and Long (5) used a time-
dependent Euler-Code for near-field computations in combination with the method of Kirchhoff (6) for
far-field predictions. Schnell (7) used a time-domain RANS approach to solve tonal noise of a fan stage,
allowing arbitrary blade counts. A hybrid approach, using CFD (Computational Fluid Dynamics) and CAA
(Computational AeroAcoustics) techniques, is presented by Weckmüller et al. (8). For the unsteady source
region the CFD-solver TRACE (DLRi) was used to calculate the aerodynamic flow field and the sound
sources. The flow solution was coupled to the sound field calculations in the CAA-solver PIANO (DLR) via
interpolation through an interface.

Hybrid CFD/CAA approaches have proven to be more efficient in terms of computational cost compared to
pure CFD methods. CFD methods require a spatial discretization resolution of 40 to 50 points per wavelength
(PPW) (8, 9), whereas for low-dissipative CAA methods (cf. Tam and Webb (10)) a resolution of 7 PPW
is sufficient. In the present work, an indirect coupling method for CFD/CAA simulations is presented. The
existing sponge-layer boundary condition in PIANO (11) is extended to implement arbitrary acoustic modes
in circular duct geometries. Since in turbomachinery applications multiple modes are generated and propagate
through the ducts and channels, the developed boundary condition allows a superposition of selected dominant
modes. Thus, in future investigations the modal noise components, calculated with unsteady CFD, can easily
be implemented into CAA calculations, aimed at mode propagation analyses in e.g. inlet/outlet ducts, pipes
and flow channels.

2. THE CAA-SOLVER PIANO
The CAA code PIANO (Perturbation Investigation of Aerodynamic Noise) was developed by the Institute

of Aerodynamics and Flow Technology of the German Aerospace Center (DLR) (11). PIANO is a FORTRAN-
iGerman Aerospace Center
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based code intended for three-dimensional, acoustic time domain simulations based on RANS calculations of
a non-uniform background flow. The spatial discretization is accomplished with Tam and Webb’s dispersion-
relation-finite difference scheme of 4th order (11, 10). This optimized discretization in wavenumber space,
ensures an accurate propagation of the sound waves (10, 12). To minimize the dissipation and dispersion errors
of the time discretization, the low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme, presented
by Hu et al. (13), is used (11). In PIANO, two sets of equations are available: the linearized Euler equations
(LEE) or the acoustic perturbation equations (APE). For the current work the LEE are used.

2.1 Sponge-Layer
PIANO applies different kinds of sponge-layer types. A sponge-layer boundary condition is defined along

multiple nodes of the CAA mesh to either implement acoustic sources or to provide acoustic damping, in order
to avoid reflections at domain boundaries. In general, the sponge-layer boundary enforces defined forcing
functions on the source term q of the LEE (11, 14):

q =−σ(x)
(
ϕcomputed−ϕforcing function

)
, (1)

with an arbitrary quantity ϕ (here: pressure, density, sound particle velocities). A fading function σ(x),
dependent on the distance from the wall, is employed to launch the defined forcing function gradually (14)

σ(x) = σmax

∣∣∣∣1− x−L
L

∣∣∣∣γ . (2)

L denotes the length of the sponge-layer and γ the exponent of the fading function. The magnitude σmax is
usually set to σmax > 100 to ensure the initialization of the forcing function. Consequently, the solution at
x = 0 corresponds to the forcing functions, whereas for x = L the solution of the LEE applies. This approach
prevents reflections at the boundary between the sponge-layer and the acoustic domain. Depending on the
particular application, the depth of the sponge-layer, and the magnitude of the fading function can be adjusted.

To implement arbitrary acoustic modes via a sponge-layer boundary condition, the forcing functions,
defining the variables ϕforcing function, need to be manipulated such that the chosen modes are imposed upon the
acoustic domain. The governing equations of mode propagation in cylindrical coordinates are derived in the
following chapter.

3. FORCING EQUATIONS FOR DUCT MODES
For a circular duct with a uniform mean flow the acoustic wave equation in cylindrical coordinates r, Θ, z

is given by
1
a2

D2 p′

Dt2 −
1
r

∂

∂ r

(
r

∂ p′

∂ r

)
− 1

r2
∂ 2 p′

∂Θ2 −
∂ 2 p′

∂ z2 = 0, (3)

with the speed of sound a and the acoustic pressure perturbation p′. Using the condition of acoustically hard
walls and mode propagation in the positive axial direction, the solution of Eq. (3) for one pair of modes m,n
yields

p′m,n(z,r,Θ, t) =
(

A3e−imΘ +B3eimΘ

)
︸ ︷︷ ︸

azimuthal

·A2Jm(βm,nr)︸ ︷︷ ︸
radial

·A1e−iα+
m,nz︸ ︷︷ ︸

axial

·eiωt , (4)

where A1,2,3 and B1,3 denote the complex amplitudes of the partial waves in azimuthal, radial, and axial
direction, respectively. The Bessel function of the first kind Jm determines the pressure distribution in radial
direction subject to the radial wavenumber βm,n =

um,n
R . Taking into account a homogeneous and homentropic

axial mean flow with Mach number Ma the axial wavenumber is given by

α
+
m,n =

−kMa+
√

k2− (1−Ma2)β 2
m,n

(1−Ma2)
. (5)

The assumption of a steady and uniform mean flow is sufficient, since the main applications for the sponge-
layer approach are duct inlets and exits, outside the unsteady flow regions. Here, axial flow discrepancies and
rotational velocities can be neglected. An acoustical mode only propagates in axial direction if αm,n is real.
Since the sound field in a duct is always a superposition of all modes that propagate, the overall sound field is
described with

p′(z,r,Θ, t) =
∞

∑
m=0

∞

∑
n=0

p′m,n(z,r,Θ, t). (6)
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For the implementation of the acoustic modes, altogether 5 forcing equations for the acoustic perturbation
quantities are needed: for the pressure p′m,n (cf. Eq. (4)), the density ρ ′, and the sound particle velocities
u′,v′,w′. The distribution of the acoustic density corresponds to the pressure’s of Eq. (4)

ρ
′
m,n = p′m,n. (7)

The sound particle velocities are derived under the assumption of a proportional coherence to the sound
pressure p′m,n:

u′m,n =C · p′m,n (8)

v′m,n = D · p′m,n (9)

w′m,n = E · p′m,n (10)

Since p′m,n is given by Eq. (4), the missing factors C,D,E are obtained using the Euler equations for inviscid
flows without volume forces

ρ
Dui

Dt
=−∂ p′

∂xi
. (11)

For a uniform mean flow U0 in axial direction z Eq. (11) yields

∂u′

∂ t
+U0

∂u′

∂ z
=− 1

ρ

∂ p′

∂ z
. (12)

Deriving the temporal and spatial derivatives of u′ from Eq. (12) with Eq. (8), the proportionality factor C for
u′ is derived as

C =
1
ρ

αm,n

ω−U0α
+
m,n

. (13)

The same approach is thus used to obtain the factors for the circumferential direction

∂w′

∂ t
+U0

∂w′

∂ z
=− 1

ρr
∂ p′

∂Θ
(14)

D =− m
ρr · (ω−U0α

+
m,n)
· B3eimΘ−A3e−imΘ

B3eimΘ +A3e−imΘ
(15)

and the radial direction
∂v′

∂ t
+U0

∂v′

∂ z
=− 1

ρ

∂ p′

∂ r
(16)

E =−
βm,n

2ρ

Jm−1(um,n)− Jm+1(um,n)

iJm(βm,nr) · (ω−U0α
+
m,n)

. (17)

Based on Eq. (4) and Eq. (8)-(10) the sound field of a single mode can be described. For superposed modes,
the sum of all forcing equations (cf. Eq. (6)) constitute the overall sound field. The named equations serve as
the forcing functions ϕforcing function described in Sec. 2.1.

3.1 Implementation Strategy
In order to initialize specific sound sources in the acoustical domain in PIANO, a specific input file is read

during the initialization of PIANO. Here, the input file is modified such that selected modes are induced by
the forcing functions of Sec. 3. For this, variables have to be determined that define the modal structure of
pressure, density, and sound particle velocities distinctly. Thus, the user-defined variables are

• Azimuthal mode order m
• Radial mode order n
• Wavenumber k
• Amplitude in positive azimuthal direction A3
• Amplitude in negative azimuthal direction B3
• Amplitudes of radial an axial parts A1,2
• Duct radius R

The above-named quantities are stored in a FORTRAN structure which enlarges in dimension, dependent on
the mode count that is defined by the user. For every induced mode, the state variables are computed according
to Eq. (4), (8)-(10) for every time step in the simulation. The overall sound field is obtained by adding the
partial solutions corresponding to Eq. (6). The generated sound field is imposed upon the acoustic domain
according to Eq. (1).
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4. CODE VALIDATION
To assess the reliability of the numerical approach for mode implementation, various mode combinations

are computed. For that purpose, a uniform duct geometry with radius R and length 10R is used (cf. Fig. 1).
The sponge-layer is oriented into the positive axial direction, since the forcing equations only account for
mode propagation in the positive axial direction. The duct walls are defined as acoustically hard walls. At the
duct exit, a damping sponge-layer is applied to avoid reflections that might affect source implementation at the
inlet. In case of a background flow, the flow direction is opposite to the mode propagation, as is characteristic
for turbomachinery inlet ducts. The numerical results are compared with analytical solutions for the azimuthal

Sponge Layer

R

10R
Mod

e Prop
ag

ati
on

Flow

3.5R

Figure 1 – Numerical setup for CAA simulations in PIANO: duct geometry with sponge-layer boundary
condition.

and radial pressure distributions in a circular duct.
In the present work, the focus is on mode implementation, hence the mode propagation is not examined.

Therefore, the sound pressure samples are exported close to the origin of the sponge-layer. First, the accuracy
of implementing defined mode orders is examined using the example of standing modes, complemented
by an investigation of the mean flow dependence. Subsequent, the capability of implementing spinning and
superposed modes is studied.

In a first analysis, defined modes are excited separately. The amplitudes A1,2,3 and B3 are chosen in a way
such that standing modes are generated. To ensure mode generation, the wavenumber k is selected so that a
cut-off ratio ξcut−o f f =

k
kcut−o f f

≥ 1 applies (cf. Tab. 2). The pressure distribution of the calculated test cases

Table 2 – Generation of standing acoustical modes

m,n A1,2 A3 B3 ξcut−o f f

1,2 1 1 1 1.01
2,0 1 1 1 1.02
2,1 1 1 1 1.01
3,0 1 1 1 1.02
3,3 1 1 1 1.00
7,0 1 1 1 1.00

is shown in Fig. 2. All executed simulations show robust and stable behavior. To verify the validity of the
implemented mode structures, the azimuthal and radial pressure distributions are compared to the analytical
solution. Exemplarily, the azimuthal pressure patterns of the modes m,n = (2,1),(3,3),(7,0) at the duct wall
are shown on the left hand side of Fig. 3. The numerical results in the sponge-layer fit well to the analytical
values. The percentage deviations from the analytical solution for all computations of Tab. 2 are below 1%,
with the highest aberration of 0.7% for mode m,n = (7,0). Furthermore, the radial pressure patterns from
the CAA simulations in PIANO are in good accordance with analytic solutions, as well (right hand side Fig.
3). Here, the maximum deviation of 1,2% is found for m,n = (1,2) (not shown). It should be noted that
the observed aberrations are differences in amplitude, not in phase. The numerical results show a sufficient
accuracy for standing modes in relation to the analytical solution of the wave equation.
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m,n = (1,2) m,n = (2,0) m,n = (2,1)

m,n = (3,0) m,n = (3,3) m,n = (7,0)

0−p∗max p∗max

Figure 2 – Contour plots of the sponge-layer - dimensionless sound pressure p∗.
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Figure 3 – Dimensionless pressure distributions for m,n = (2,1),(3,3),(7,0) (top down).
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The newly developed boundary condition takes into account a uniform mean flow in axial direction.
It is assumed that radial fluctuations and swirl can be neglected at a sufficient distance from the rotating
turbomachinery components. The axial mean flow affects the axial wavenumber αm,n and therefore the mode’s
cut-on frequency and axial wavelength. It is expected that with increasing Mach number and for upstream
propagating modes, the axial wavelength contracts. The axial wavelengths of the standing mode m,n = (2,0),
propagating at different mean flows are examined:

1.Ma = 0 : m,n = (2,0), ξcut−o f f = 2.58, A1,2 = 1, A3 = 1, B3 = 1
2.Ma = 0.2 : m,n = (2,0), ξcut−o f f = 2.58, A1,2 = 1, A3 = 1, B3 = 1
3.Ma = 0.4 : m,n = (2,0), ξcut−o f f = 2.58, A1,2 = 1, A3 = 1, B3 = 1

The axial wavelength is given by

λax =
2π

αm,n
(18)

and therefore the analytical values for the three test cases are λax,Ma=0 = 0.085m, λax,Ma=0.2 = 0.069m, and
λax,Ma=0.4 = 0.049m. To obtain the axial wavelengths from the PIANO computations, pressure distributions
along the duct axis at the duct walls are exported. A subsequent spatial Fourier analysis yields the spatial
frequency and therewith λax. The results from PIANO are presented in Fig. 4. The dominant frequencies give
the axial wavelengths for the different test cases:

• λax,Ma=0 = 0.083m
• λax,Ma=0.2 = 0.067m
• λax,Ma=0.4 = 0.050m

The results are in good agreement with the analytical solutions.
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Figure 4 – Spatial frequency of axial pressure distributions for m,n = (2,0) at different Mach numbers.

Whether the generated modes are standing or spinning modes depends on the proportion of the partial
wave amplitudes of Eq. (4) to each other. In general, the acoustic pressure patterns of turbomachinery inlets or
outlet channels are dominated by spinning modes, which is why the developed boundary condition of this
work must incorporate an accurate implementation of modes with rotational speed. As shown by Rice et al.
(?), the wave propagating angle in the z−Θ plane, relative to the duct axis, is defined as

φ = arctan
(

m
αm,n · r

)
. (19)

If a spinning mode of order m,n = (3,0), propagating at a wavenumber k = 43 with amplitudes A3 = 1,
B3 = 0 is considered, Eq. (19) yields φ = 73◦ for the test case considered. By analogy, for m,n = (1,0), k = 19
and A3 = 1, B3 = 0 the propagation angle is φ = 65◦. Taking the wavefronts from the CAA simulation at a
position within the sponge-layer, the calculated angles agree well with the computed sound field (cf. Fig. 5).
The azimuthal and radial pressure patterns as well show a maximum deviation less than 1% compared to the
analytical solution.
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Wavefront
φ = 73◦

Wavefront

φ = 65◦

Mode

m,n = (1,0)m,n = (3,0)

Propagation

Figure 5 – Mode propagation angles of spinning modes m,n = (3,0) and m,n = (1,0) .

The sound field in ducts, pipes, and all enclosed channels is always a superposition of all cut-on modes.
Hence, the implementation of a realistic sound field emitted from turbomachinery requires the capability to
superpose modes. To test the accuracy of the code with regard to the superposition of modes, a test case with
two counterrotating modes with the same mode order is simulated:

1.θ+-rotating mode: m,n = (1,0), ξcut−o f f = 2.11,A1,2 = 1, A3 = 1,B3 = 0

2.θ−-rotating mode: m,n = (1,0), ξcut−o f f = 2.11,A1,2 = 1, A3 = 0,B3 = 1

Given that the above-named modes propagate with the same order of amplitudes, the superposition of the
modes results in a standing mode m,n = (1,0). Again, the pressure distributions fit the analytical solution
quite well. The deviation is less than 0.1%. The analytical axial wavelength λax for the standing mode is
λax = 0.177m. The result of a spatial Fourier analysis of an axial pressure distribution in the sponge-layer is
shown in Fig. 6. The resulting axial wavelength of the CAA simulation is consequently λax = 0.175m, which
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Figure 6 – Spatial Fourier analysis of an axial pressure distribution along the sponge-layer.

corresponds to an aberration of 1.1%. The test case proves that the presented sponge-layer boundary condition
allows the implementation of superposed modes with high accuracy.

5. CONCLUSIONS
An extension of the sponge-layer boundary condition of the code PIANO is presented and validated. The

extension aims at the sound generation of rotating turbomachinery due to rotor-stator interaction. For that
purpose, the forcing functions of the sponge-layer boundary condition are manipulated such that arbitrary
modes can be implemented accounting for a uniform mean flow. The resulting sound field is a superposition
of all cut-on modes. The presented boundary condition allows the implementation of these modes in a
three-dimensional circular duct geometry.

Azimuthal and radial pressure distributions of test cases with different mode orders show a good agreement
with the results of analytical solutions. The analysis of the mode implementation at different background flows
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shows a sufficient accuracy when examining the axial wavelengths. The expected contraction of λax can be
observed. The investigation of the mode propagation angle φ , verifies the capability of the developed boundary
condition of implementing spinning modes. A good agreement in pressure distribution and axial wavelength
of CAA and analytics can be attained regarding the excitation of superposed modes.

Future developments are aimed at the extension of the boundary condition for both, circular and annular
ducts. This aspect makes the boundary condition suitable for geometries with hub, e.g. aircraft engine inlets
with spinners and thus allows an acoustic analysis of these geometries.
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