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ABSTRACT
A method is presented for estimating the size of bearing raceway defects that are larger than the angular
spacing between balls. Previous defect size estimation techniques cannot be used for such defects since they
are limited to defects that are smaller than the ball angular spacing. The reason for this is that two defects that
differ in size by the ball angular spacing produce the same time difference between the defect entrance and exit
events in the vibration response, and it is this time difference that is used to estimate the defect size in previous
techniques. Thus, to distinguish between such defects, a third feature of the vibration response is required.
It is hypothesised and validated through simulations that the third distinguishing feature is the characteristic
frequencies of the low frequency event. This event occurs when a ball gradually de- and restresses upon
entering and exiting the defect and corresponds to a varying stiffness excitation of the rigid body modes of the
bearing assembly. It is shown that two defects that differ in size by the ball angular spacing produce different
rigid body modes because such defects generate different bearing stiffness variations. This results in low
frequency events with different characteristic frequencies since these frequencies correspond to the natural
frequencies of the rigid body modes that are excited as balls enter and exit the defect.

Keywords: Ball bearing, varying stiffness, defect, vibration, condition monitoring I-INCE Classification
of Subjects Number: 41.3
(See http://www.inceusa.org/links/Subj%20Class%20-%20Formatted.pdf.)

1. INTRODUCTION
A number of bearing defect size estimation techniques have been developed (1, 2) which rely on estimating

the time difference between the low and high frequency vibration events that occur as balls pass through
a defect. The high frequency event occurs when a ball exits the defect and corresponds to an excitation of
the high frequency bearing resonances. The low frequency event occurs when a ball gradually destresses
upon entering the defect (3, 4) and corresponds to a varying stiffness (parametric) excitation of the rigid
body modes of the bearing assembly (5). The previously developed defect size estimation techniques (1, 2)
cannot distinguish between defects that differ in circumferential extent by (an integer times) the ball angular
spacing since the time difference between the low and high frequency vibration events will be identical for
such defects. To distinguish between such defects when estimating their size, a third feature of the vibration
response is therefore required. This paper hypothesises that under the same static loading conditions, the third
feature is the characteristic frequency of the low frequency event. This hypothesis is validated by simulating
the vibration response for such defects using a previously developed multi-body nonlinear dynamic model of a
defective rolling element bearing (1, 5).

2. MULTI-BODY NONLINEAR DYNAMIC MODEL OF A DEFECTIVE BEARING
2.1 Model diagram

Figure 1 presents a diagram of the multi-body nonlinear dynamic model of a ball bearing with an outer
raceway defect. The deep-groove ball bearing considered here has Nb balls, a pitch radius Rp, a ball radius
Rb, and an unloaded contact angle α0 = 0◦. Only radial displacements and bearing stiffness variations are
considered because the ball bearing is radially loaded which results in a loaded contact angle α = 0◦. The
inner raceway and shaft are modelled as a single rigid body of mass mi and its displacement is defined by xi(t)
and yi(t). The outer raceway and bearing support structure are modelled as a single rigid body of mass mo
and its displacements is defined by xo(t) and yo(t). The radial stiffness and damping of the bearing support
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Figure 1 – Multi-body nonlinear dynamic model of a radially loaded defective ball bearing. The bearing has a
square-shaped outer raceway defect of depth d(φ) and circumferential extent ∆φ f which is centred at φ f .

structure are modeled by the parameters kox, koy, cox and cox. The bearing is subjected to a static radial load F
defined by

F = [Fx Fy]
T, (1)

where Fx and Fy are the x and y components of the static radial load. Further details of the model can be found
in Refs. (5, 6). The high-frequency bearing resonance that was included in the model presented in Refs. (5, 6)
is excluded here because the emphasis is on the varying stiffness excitation of the rigid body modes of the
bearing assembly.

2.2 Bearing macro-geometry and kinematics
The shaft in Figure 1 rotates at a run speed ωs = 2π fs which results in a nominal cage speed ωc = 2π fc of

ωc =
ωs

2

(
1− Rb cosα

Rp

)
. (2)

The angular position φ j(t) of ball j shown in Figure 1 is defined as

φ j(t) = φc(t)+
2π( j−1)

Nb
, j = 1 to Nb, (3)

with φc(t) the cage angular position and Nb the number of balls. Equation (3) defines the cage angular position
to coincide with ball j = 1. For the case of an outer raceway defect considered here, the nominal defect
frequency is given by the outer raceway ball pass frequency

fbpo = Nb fc. (4)

Slippage of the balls is considered in the model by including small variations in the cage speed φc(t) as
described in Refs. (5, 6).

2.3 Defect depth profile
In the diagram of the bearing shown in Figure 1, the outer raceway defect has a circumferential extent

defined by ∆φ f and is centred at an angle φ f . The defect location φ f is constant for an outer raceway defect but
rotates at the shaft speed ωs for an inner raceway defect, such that φ f (t) = φ f (0)+ωst. The study presented
here considers square-shaped outer raceway defects of depth h for which a defect depth profile d(φ) is
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generated as

d(φ) =


min

(
h,R2

b−
√

R2
b−0.25R2

o(φ −φ f +0.5∆φ f )2
)

if φ f −0.5∆φ f ≤ φ < φ f

min
(

h,R2
b−
√

R2
b−0.25R2

o(φ f +0.5∆φ f −φ)2
)

if φ f < φ ≤ φ f +0.5∆φ f

0 if φ f +0.5∆φ f ≤ φ ≤ φ f −0.5∆φ f

(5)

where Ro = Rp +Rb + c/2 is the outer raceway radius. Equation (5) effectively describes the path of the
centre of the ball as it traverses the square-shaped defect (6). Defects with more complicated defect depth
profiles, such as extended defects with significant surface waviness features, can be generated as described in
Refs. (5, 7). Figure 3(f) presents example defect depth profiles for square-shaped defects of depth h = 50 µm
and circumferential extents ∆φ f = 20 and 60◦, with the solid and dashed lines indicating the modeled and
actual defect depth profiles, respectively.

2.4 Hertzian contact deformations and forces
The relative displacements between the inner and outer raceways are contained in a vector q(t) which is

defined as
q(t) = [δx(t) δy(t)]T = [xi(t)− xo(t) yi(t)− yo(t)]T, (6)

where δx(t) and δy(t) are the relative displacements in the x and y directions, respectively. The Hertzian contact
deformation δ j(t) for ball j is given by

δ j(t) = δx(t)cosφ j(t)+δy(t)sinφ j(t)− c−d(φ j(t)), (7)

where d(φ j(t)) is the defect depth profile evaluated at the ball angular position φ j(t), and c is the radial
clearance. The Hertzian contact force Q j(t) associated with the contact deformation δ j(t) is defined by the
load-deflection relationship

Q j(t) = Kδ
+
j (t)

1.5, (8)

where the load-deflection factor K (units of N/m1.5) depends on the curvatures and material properties of the
surfaces in contact (8). The contact force Q j(t) acts in the radial direction. The superscript (·)+ indicates that
δ j(t) is set to zero when it is smaller than zero.

2.5 Nonlinear equations of motion
The nonlinear equations of motion are now given by (5)

Mẍ(t)+Cẋ(t)+Kx(t)+
Nb

∑
j=1

[k j(t)δ+
j (t)+ cδ̇ j(t)]R j(t) = F, (9)

where the state vector x(t) is given by

x(t) =
[

xi(t) yi(t) xo(t) yo(t)
]T

. (10)

The nonlinear spring stiffness k j(t) in Equation (9) models the Hertzian contact stiffness for ball j and is
defined as

k j(t) = K
√

δ
+
j (t). (11)

The matrix R j(t) in Equation (9) defines a transformation from orthogonal to radial coordinates and is
formulated as

R j(t) =
[

cosφ j(t) sinφ j(t) −cosφ j(t) −sinφ j(t)
]T

. (12)

The mass, stiffness and damping matrices in Equation (9) are defined as

M =

[
Mi 0
0 Mo

]
K =

[
0 0
0 Ko

]
C =

[
0 0
0 Co

]
, (13)

with

Mi =

[
mi 0
0 mi

]
Mo =

[
mo 0
0 mo

]
Ko =

[
kox 0
0 koy

]
Co =

[
cox 0
0 coy

]
. (14)
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3. FORMULATION OF VARYING STIFFNESS OF A DEFECTIVE BALL BEARING
3.1 Load distribution

For a defective ball bearing subjected to static radial load F defined in Equation (1), static equilibrium is
achieved when the sum of the loads generated by the static contact forces Q̄ j over all balls equals the applied
static loads. Using Equations (7) and (8), the loads carried by the balls are thus found by solving the following
set of nonlinear algebraic equations as a function of the cage angular position φc[

Fx

Fy

]
=

Nb

∑
j=1

Q̄ j

[
cosφ j

sinφ j

]
=

Nb

∑
j=1

[
Fx j

Fy j

]
. (15)

A Newton-Raphson method can be used to solve Equation (15) at each considered cage angular position, with
the ball positions φ j depending on the cage angular position as defined by Equation (3). The bearing relative
displacements that solve Equation (15) are defined as

q̄ = [δ̄x δ̄y]
T. (16)

Once the relative displacements q̄ are solved as a function of the cage angular position, the corresponding
contact deformations are calculated using Equations (7) and (8), with solutions denoted by (·̄) similar to
Equation (16). For a defect-free bearing, the solutions are found by solving Equation (15) while setting
d(φ) = 0.

3.2 Bearing stiffness variations
The bearing stiffness variations are calculated by linearising the force-displacement relationship defined

by Equations (7) and (8) at the relative displacements and rotations q̄ that solve Equation (15). The resulting
symmetric bearing stiffness matrix Kb is defined as (5)

Kb =

[
kxx kxy

kxy kyy

]
=

[
∂Fx
∂δx

∂Fx
∂δy

∂Fy
∂δx

∂Fy
∂δy

]
q=q̄

= 1.5K
Nb

∑
j=1

√
δ̄
+
j

[
cos2 φ j cosφ j sinφ j

cosφ j sinφ j sin2
φ j

]
. (17)

Each element of the stiffness matrix Kb varies with cage angular position even for the case of a defect-free
bearing for which d(φ) = 0, leading to the well-known varying stiffness vibrations (9, 10). However, a raceway
defect typically causes much larger and faster stiffness variations compared to a defect-free bearing, and may
also reduce the average stiffness over a single cage rotation, especially when multiple balls are in the defect at
once. This will be demonstrated by the simulations presented in Section 4.

3.3 Linearised multi-body dynamic model
The nonlinear dynamic model defined by Equation (9) is now linearised at the quasi-static displacements q̄,

which are calculated as described in Section 3.1, and the natural frequencies and damping ratios of the modes
of the resulting linearised system are defined. The linearised equations of motion are given by

M ¨̄x(t)+ C̄ ˙̄x(t)+ K̄x̄(t) = 0, (18)

where x̄(t) = x(t)− x̄ are small displacements around the quasi-static solution x̄. This solution is calculated as
described in Section 3.1 by noting that ȳo = Fy/koy, x̄o = Fx/kox, ȳi = ȳo + δ̄y, and x̄i = x̄o + δ̄x. The linearised
stiffness and damping matrices in Equation (18) are formulated as

K̄ =

[
Kb −Kb

−Kb Kb +Ko

]
, C̄ =

[
Cb −Cb

−Cb Cb +Co

]
, (19)

where the damping matrix Cb is formulated as (5)

Cb =

[
cxx cxy

cxy cyy

]
= c

Nb

∑
j=1

[
cos2 φ j cosφ j sinφ j

cosφ j sinφ j sin2
φ j

]
. (20)

The bearing stiffness matrix Kb in Equation (17) is calculated as described in Section 3.2 and varies with
cage angular position φc as well as the circumferential extent ∆φ f of the defect. The viscous contact damping
constant c in Equation (9) is adjusted such that the bearing damping terms cxx and cyy in Equation (20) for the
defect-free case (normalised by 1 Ns/m) are in the order of 0.25-2.5×10−5 times the linear bearing stiffness
terms kxx and kyy (normalised by 1 N/m), respectively (11).
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3.4 Rigid body modes of linearised dynamic model
The undamped natural frequencies ωn and damping ratios ζn of the modes of the linearised dynamic system

defined by Equation (18) are calculated by solving the following generalized eigenvalue problem (12)[
0 −K̄
−M 0

]
v =−λ

[
M C̄
0 M

]
v. (21)

This results in eight eigenvalues λn (four complex conjugate pairs) and eigenvectors vn from which the
undamped natural frequencies and damping ratios are calculated as

ωn = |λn|, ζn =
|Re(λn)|
|λn|

, n = 1,2, . . . ,8. (22)

These natural frequencies vary periodically at the ball pass frequency due to the varying bearing stiffness Kb,
and are also dependent on the circumferential extent ∆φ f of the defect as demonstrated in the next section.

4. SIMULATION RESULTS
4.1 Model implementation

The deep-groove ball bearing considered here has Nb = 9 balls, a ball radius Rb = 3.97 mm, a pitch radius
Rp = 19.66 mm, an unloaded contact angle α0 = 0◦, and a radial clearance c = 0 µm. The bearing is subjected
to a radial load Fy =−400 N in the vertical direction while the horizontal component Fx = 0 N. The bearing
has a square-shaped outer raceway defect of depth h = 50 µm centred in the load zone at φ f = 270◦. The two
modeled defects have circumferential extents of ∆φ f = 20◦ and 60◦ such that they exactly differ in size by
the ball angular spacing of 360◦/Nb = 40◦. The multi-body nonlinear dynamic model was implemented in
Simulinkr and the equations of motion were solved using the ordinary differential equation solver (ode45)
which is based on a Runga-Kutta method. The running speed was set to fs = 20 Hz which results in a nominal
outer raceway defect frequency fbpo = Nb fc = 71.8 Hz. Initial conditions were set to the static displacements
x̄ corresponding to the cage position at time t = 0. The continuous time-domain results were discretized using
a sample frequency Fs = 32,768 Hz and acceleration spectra were calculated from 2.1 seconds of simulated
data using a Hanning window and a frequency resolution of 128 Hz. The other parameter values used in the
model are included in Table 1.

Table 1 – Parameter values used in the multi-body nonlinear dynamic model of the defective ball bearing.

Hertzian contacts Mass Stiffness Damping
K = 7.93 GN/m1.5 mi = 0.3 kg kox = 740.2 kN/m cox = 47.1 Ns/m

mo = 0.3 kg koy = 740.2 kN/m coy = 47.1 Ns/m

4.2 Load distribution for defective ball bearing
Figure 2 presents the load distribution for the two defect circumferential extents of ∆φ f = 20◦ and 60◦.

The load distribution for a defect-free bearing is indicated by the green line, and the gray-shaded rectangles
indicate the circumferential extent of the defects. The number of balls positioned in the defect zone at any
one time varies between none or one for ∆φ f = 20◦ and one or two for ∆φ f = 60◦. Figure 2 shows that when
a ball is positioned in the defect, it destresses and loses its load carrying capacity and the load it carried is
redistributed to the balls outside the defect zone. Defect-free raceway sections are thus subjected to increased
static loading when balls lose their load carrying while traversing through the defect. In general, the load
carrying capacity that is lost and the associated load redistribution will depend mostly on the defect geometry,
but also on the applied load and the radial clearance. When the defect circumferential extent ∆φ f is smaller
than the ball angular spacing of 40◦, the load distribution only deviates from the defect-free case when a single
ball is in the defect zone, as shown in Figure 2(a). When the defect grows larger than the ball angular spacing
such that ∆φ f > 40◦, multiple balls are in the defect at once and the load distribution deviates entirely from
the defect-free case, as shown in Figure 2(b). For this case, there is a large increase in the load carried by the
balls located outside the defect zone. As shown in the next section, the redistribution of the load results in
large variations of the effective stiffness of the bearing assembly due to the nonlinear nature of the Hertzian
contact stiffness, which becomes stiffer as the contact force Q̄ j becomes larger.

4.3 Rigid body modes of linearised dynamic system
Figure 3(a–e) compares the radial stiffness variations Kb and the corresponding variations in the natural

frequencies ωn of the rigid body modes of the defective bearing assembly, for the two considered defects with
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Figure 2 – Load distribution for a defect-free bearing (green) and a defective bearing with a square-shaped
outer raceway defect of depth h = 50 µm centred at φ f = 270◦ with circumferential extents of (a) ∆φ f = 20◦

and (b) ∆φ f = 60◦. The gray-shaded rectangles indicate the circumferential extent of the defect.

circumferential extents of ∆φ f = 20◦ and 60◦ as well as the defect-free case. The corresponding defect depth
profiles d(φ) are presented in Figure 3(f). The bearing stiffness and natural frequencies of the rigid body modes
vary periodically with the fundamental period defined by the ball angular spacing of 40◦. Figure 3(e) shows
that the radial cross-coupling stiffness kxy is much smaller than the radial stiffnesses kxx and kyy presented in
Figure 3(a) and (c). As a result, analysis of the eigenvectors vn for each of the four rigid body modes shows
that two modes have dominant motion in the x direction and two in the y direction. The corresponding natural
frequencies of these modes have been labelled as ωx1, ωx2, ωy1, and ωy2 and their variation with cage position
φc is presented in Figure 3(b) and (d). The results in these figures illustrate that defects with circumferential
extents that differ by the ball angular spacing produce different variations in the natural frequencies of the
rigid body modes. The mean natural frequencies ωy1 and ωy2 are lower for the larger defect with ∆φ f = 60◦

because the mean radial stiffness kyy is lower compared to the smaller defect with ∆φ f = 20◦, as shown in
Figure 3(c). The mean natural frequencies ωx1 and ωx2 are higher for the larger defect because the mean radial
stiffness kxx is larger in Figure 3(a). As demonstrated in the next section, this results in low frequency entrance
and exit events in the simulated vibration response that have different characteristic frequencies.

4.4 Simulated vibration response
Figure 4(a–d) present the simulated vibration responses in the horizontal and vertical directions for the

considered defects with circumferential extents ∆φ f = 20◦ and 60◦. A short time segment is shown to illustrate
a single defect entrance and exit event in the vibration response. Since a high frequency bearing resonance was
not included in the model, the simulated results do not contain the high frequency event that normally occurs
in conjunction with a low frequency event when a balls exits the defect. Figure 4(e) and (f) present the contact
forces for the balls that enter and exit the defect within the time segment shown, with the thin lines indicating
the static contact forces F̄x j and F̄y j, which were calculated as described in Section 3.1, and the thick lines
indicating the dynamic contact forces Fx j(t) and Fy j(t), which fluctuate around and decay to the static contact
forces as balls enter and exit the defect.

For the smaller defect with ∆φ f = 20◦, Figure 4(a) and (c) show that the horizontal vibration response
has a lower amplitude than the vertical vibration response. This occurs because the bearing assembly is
predominantly excited in the y direction due to the locations of the defect entrance and exit, and this excitation
does not produce significant rigid body motion in the x direction since the radial cross-coupling stiffness kxy is
small as was observed in Figure 3(e). For the larger defect with ∆φ f = 60◦, Figure 4(b) and (d) show that the
amplitudes of the horizontal and vertical vibration responses are more similar because the bearing assembly is
excited in both the x and y directions due to the larger extent of the defect.

For the shorter defect with ∆φ f = 20◦, the contact forces presented in Figure 4(e) show that the entrance
and exit events are caused by a single ball ( j = 9) de- and restressing between the raceways as it traverses
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Figure 3 – Variations in bearing stiffness and natural frequencies of the rigid body modes of the linearised
dynamic system for the case of a square-shaped outer raceway defect of depth h = 50 µm and circumferential
extent ∆φ f = 20◦ and 60◦ centred at φ f = 270◦. (a) Radial bearing stiffness kxx. (b) Natural frequencies of
modes with dominant motion in x-direction. (c) Radial bearing stiffness kyy. (d) Natural frequencies of modes
with dominant motion in y-direction. (e) Radial cross-coupling bearing stiffness. (f ) Modeled (solid) and
actual (dashed) defect depth profiles.
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Figure 4 – Simulated vibration response and contact forces for the case of a square-shaped outer raceway
defect of depth h = 50 µm and circumferential extent ∆φ f = 20◦ and 60◦ centred at φ f = 270◦. (a) Horizontal
acceleration for ∆φ f = 20◦. (b) Horizontal acceleration for ∆φ f = 60◦. (c) Vertical acceleration for ∆φ f = 20◦.
(d) Vertical acceleration for ∆φ f = 60◦. (e) Contact force Q j(t) for ball j = 9 (thick line) passing through
defect with ∆φ f = 20◦ with thin line indicating the static load solution Q̄ j. (f ) Contact forces Q j(t) (thick
lines) for balls entering ( j = 9) and exiting ( j = 10) defect with ∆φ f = 60◦ with thin lines indicating the static
load solution Q̄ j.
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through the defect. For the larger defect with ∆φ f = 60◦, Figure 4(f) shows that the entrance and exit events
are caused by two different balls; one ball ( j = 9) destresses as it enters the defect and another ball ( j = 10)
restresses between the raceways as it exits. The time difference ∆t = mod(∆φ f ,40◦)/ωc = 0.007s between the
entrance and exit events is the same for both defects because the circumferential extents of the two defects
differ by the ball angular spacing of 40◦. The simulated results thus illustrate that a third feature is required to
distinguish between the two defects when estimating their size. The next section demonstrates that this third
feature is the characteristic frequencies of the low frequency entrance and exit events.

4.5 Characteristics of low frequency entrance and exit events
Figure 5 presents the spectral densities of the simulated vibration responses and illustrates that the third

feature that can be used to distinguish between the two defects is the difference in the characteristic frequencies
of the low frequency events. The dashed lines indicate the minimum and maximum values of the natural
frequencies ωx1, ωx2, ωy1 and ωy2 of the rigid body modes of the bearing assembly vary, which were illustrated
in Figure 3(b) and (d).
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Figure 5 – Simulated vibration spectra for a square-shaped outer raceway defect of depth h = 50 µm and
circumferential extents of ∆φ f = 20◦ and ∆φ f = 60◦. (a) Horizontal vibration response with the dashed lines
indicating the minimum and maximum values of ωx1 and ωx2. (b) Vertical vibration response with the dashed
lines indicating the minimum and maximum values of ωy1 and ωy2.

Figure 5(a) shows that as the defect grows in size from ∆φ f = 20◦ to 60◦, the characteristic frequencies of
the low frequency events in the horizontal vibration response increase which correlates to the variations in
the natural frequencies ωx1 and ωx2 observed in Figure 3(b). For the vertical vibration response, Figure 5(b)
shows that the characteristic frequencies of the low frequency event decrease as the defect grows which
correlates to the variations in the natural frequencies ωy1 and ωy2 observed in Figure 3(b). Thus, the shifting
of the characteristic frequencies of the low frequency events observed in the vibration spectra can be used to
distinguish between the two defects when estimating their size.

5. CONCLUSION
The presented simulation results demonstrate that the characteristic frequency of the low frequency events

observed in the vibration response, which are caused by varying stiffness excitations of the rigid body modes
that occur when balls enter and exit the defect (5), changes with the size of the defect. This means that
the characteristic frequencies of the low frequency event can be used as a feature in defect size estimation
techniques in order to overcome the inability of current techniques (1, 2) to distinguish between defects that
differ in size by the ball angular spacing. Experimental work will need to be undertaken to further validate this
hypothesis.
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