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ABSTRACT 

Patch Near-field Acoustical Holography (NAH) methods like SONAH and ESM are limited to relatively low 

frequencies where the average array inter-element spacing is less than half a wavelength, while beamforming 

provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods 

can be used with the same array. But for holography to provide good low-frequency resolution, a small 

measurement distance must be used, while beamforming requires a larger distance to limit sidelobe issues. 

Wideband Holography was developed to overcome that practical conflict. Only a single measurement is 

needed at a relatively short distance and a single result is obtained covering the full frequency range. The 

underlying problem solved is that at high frequencies the microphone spacing is too large to meet the spatial 

sampling criterion, and thus there is no unique reconstruction of the sound field. A reconstruction must 

therefore have a built-in “preference” for specific forms of the sound field. Doing just a Least Squares 

solution will result in reconstructed sound fields with sound pressure equal to the measured pressure at the 

microphones, but very low elsewhere. By building in a preference for compact sources, a smoother form of 

the reconstructed sound field is enforced. 

 

Keywords: Noise Source Identification, Microphone arrays, Array signal processing.  
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1. INTRODUCTION 

Near-field Acoustical Holography (NAH) is based on performing 2D spatial Discrete Fourier 

Transforms (DFT), and therefore the method requires a regular mesh of measurement positions. To 

avoid spatial aliasing problems, the mesh spacing must be somewhat less than half of the acoustic 

wavelength. In practice, this requirement sets a serious limitation on the upper frequency limit . 

Some Patch NAH methods, for example the Equivalent Source Method (ESM) (1) and Statistically 

Optimized NAH (SONAH) (2), can work with irregular microphone array geometries, but still require 

an array element spacing of less than half the wavelength. As described by Hald (3), this allows the 

use of irregular arrays that are actually designed for use with beamforming. Typically, good 

performance with beamforming can be achieved up to frequencies where the average array inter-

element spacing is two to three wavelengths. A practical issue with such a solution is the fact that the 

Patch NAH method requires measurement at a small distance to provide good resolution at low 

frequencies, while beamforming requires a medium-to-long distance to keep sidelobes at low levels. 

So for optimal wide-band performance, two measurements must be taken at different distances, and 

separate types of processing must be used with the two measurements, making it difficult to combine 

the results into a single result covering the combined frequency range. 

The rather new Compressive Sensing (CS) methods have started making it possible to use irregular 

array geometries for holography up to frequencies where the average array inter-element spacing is 

significantly larger than half of the wavelength. In general, these methods allow reconstruction of a 

signal from sparse irregular samples under the condition that the signal can be (approximately) 

represented by a sparse subset of expansion functions in some domain, i.e., with the expansion 

coefficients (amplitudes) of most functions equal to zero. The sparse set of expansion coefficients is 

typically identified by solution of an inverse problem subject to a penalty on the 1 -norm of the 

coefficient vector. Some initial work on CS was published by Tibshirani (4), and the methodology has 

been widely used in signal analysis applications, see for example Chen (5), and for beamforming as 

published by, for example, Müjdat (6), Yardibi (7), Edelman (8) and Zhong (9). 

Recently, Chardon et al. (10) published an application of CS to acoustic holography on vibrating 
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plates. They used random and pseudo-random array geometries, and they made use of the fact that 

plate vibration can often be represented to a good accuracy by relatively few functions of plane-wave 

form. Suzuki (11) published a similar method, but he used a monopole/dipole point source model of 

the same type as ESM, and he enforced sparsity in the source model by use of a 1-norm penalty on 

the solution vector. Suzuki called his method Generalized Inverse Beamforming, focusing thus on 

rather long measurement distances. Chardon et al. used readily available Matlab convex optimization 

software to solve the inverse problems including 1-norm minimization, while Suzuki developed his 

own iterative solver. Antoni (12) used a Bayesian formulation for setting up the inverse problem to be 

solved for the complex source amplitudes in a point source model. His method supports the 

specification of piston-like behaviour of the point sources over small areas, denoted as “source 

coherence”, to alleviate the underdetermined nature of the inverse problem when using an array above 

its frequency of half-wavelength average element spacing. 

The present paper describes a new method called Wideband Holography (WBH), which is covered 

by a pending patent (13). The method is similar to the method published by Suzuki. However, instead 

of applying a 1-norm penalty to enforce sparsity in the monopole source model,  WBH uses a dedicated 

iterative solver that enforces sparsity in a different way. The paper is organized as follows: chapter 2 

outlines the theory, chapter 3 discusses the applied array design, chapter 4 describes application to 

some simulated measurements, chapter 5 deals with real measurements, and finally a summary is 

given in chapter 6. 

2. THEORY 

Input data for patch holography processing is typically obtained by simultaneous acquisition with 

an array of M microphones, indexed by ,,2,1 Mm   followed by averaging of the M × M element 

cross-power spectral matrix between the microphones. For the subsequent description, we arbitrarily 

select a single high-frequency line f with associated cross-power matrix G. An eigenvector/eigenvalue 

factorization is then performed of that Hermitian, positive-semi-definite matrix G: 
H

VSVG  , (1) 

V being a unitary matrix with the columns containing the eigenvectors ,,2,1, Mv  and S a 

diagonal matrix with the real non-negative eigenvalues s on the diagonal. Based on the factorization 

in equation (1), the Principal Component vectors p can be calculated as: 

 vp s . (2) 

Just like ESM and SONAH, the WBH algorithm is applied independently to each of these principal 

components, and subsequently the output is added on a power basis, since the components represent 

incoherent parts of the sound field. So for the subsequent description we consider a single principal 

component, and we skip the index , meaning that input data is a single vector p with measured 

complex sound pressure values for all microphones. 

WBH uses a source model in terms of a set of elementary sources or wave functions and solves an 

inverse problem to identify the complex amplitudes of all elementary sources. The source model then 

applies for 3D reconstruction of the sound field. Here we will consider only the case where the source 

model is a mesh of monopole point sources retracted to be behind/inside the real/specified source 

surface, i.e., similar to the model applied in ESM (1). With Ami representing the sound pressure at 

microphone m due to a unit excitation of monopole number i, the requirement that the modelled sound 

pressure at microphone m must equal the measured pressure pm can be written as: 





I

i

imim qAp
1

. (3) 

Here, I is the number of point sources, and ,,2,1, Iiqi   are the complex amplitudes of these 

sources. Equation (3) can be rewritten in matrix-vector notation as: 

Aqp  , (4) 

where A is an M × I matrix containing the quantities Ami, and q is a vector with elements qi. In 

Compressive Sensing terminology the matrix A is called the Sensing Matrix. 

When doing standard patch holography calculations using ESM, Tikhonov regularization is 

typically applied to stabilize the minimization of the residual vector. This is done by adding a penalty 
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proportional to the 2-norm of the solution vector when minimizing the residual norm: 

2

2

22

2
Minimize qAqp

q
 . (5) 

A very important property of that problem is the fact that it has the simple analytic solution:  

  pAIAAq
HH 12 

  , (6) 

where I is a unit diagonal matrix, and H represents Hermitian transpose. A suitable value of the 

regularization parameter  for given input data p can be identified automatically, for example by use 

of Generalized Cross Validation (GCV), ref. Gomes and Hansen (14). When using a specific irregular 

array well above the frequency of half wavelength average microphone spacing , the system of linear 

equations in Eq. (4) is in general strongly underdetermined, because the monopole mesh must have 

spacing less than half of the wavelength, i.e., much finer than the microphone grid. During the 

minimization in Eq. (5), the undetermined degrees of freedom will be used to minimize the 2 -norm of 

the solution vector. As will be shown in section 4.1, the consequence is a reconstructed sound field 

that matches the measured pressure values at the microphone positions, but with minimum sound 

pressure elsewhere. Estimates of, for example, sound power will therefore be much too low. Another 

effect is ghost sources because available measured data is far from determining a unique solution.  

If the true source distribution is sparse, or close to sparse, the above phenomena can be alleviated 

by replacing the 2-norm in the penalty term by a p-norm: 

p

p
qAqp

q

22

2
Minimize   (7) 

where 0 < p ≤ 1, see for example Müjdat (6). An equivalent problem with p = 1 was solved by Zhong 

et al. (9) and Chardon et al. (10): 


21

subject toMinimize Aqpq
q

. (8) 

With p = 1, both of the equivalent optimization problems are convex and can be solved quite efficiently 

by available Matlab libraries (10). Still, the computational demand is significantly higher than for the 

Tikhonov problem in Eq. (5) because no analytic solution exists, and also there are no tools available 

for automated determination of the regularization parameters  and  for given input data p.  Use of 

the p-norm with 0 < p ≤ 1 as in (7) and (8) will have the effect of favouring sparse solution vectors, 

i.e., source amplitude vectors q with a maximum number of elements equal to zero. 

A main idea behind the WBH method of the present paper is to remove/suppress the ghost sources 

associated with the real sources in an iterative solution process, starting with the  strongest real sources. 

We define the residual vector r related to Eq. (4) as:  

Aqpqr )( , (9) 

and the quadratic residual function F to be minimized as: 

2

22
1 )()( qrq F . (10) 

Denoting by qk the approximate solution after the kth iteration step, we compute first the step qk that 

minimizes the residual function F in the steepest descent direction: 

kkk s wq  . (11) 

Here, wk is the negative gradient vector: 

)()( k
H

k
H

k AqpAqrAw  , (12) 

and sk is the step length to the minimum along that direction: 

k
H
k

k
H
k

ks
gg

qrg )(
 , (13) 

the vector gk being defined as: 

kk Awg  . (14) 

The next candidate solution vector is now: 
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kkk qqq  1
~ , (15) 

where  is a possible relaxation factor, typically between 0.5 and 1.0. However, just using the step of 

Eq. (15) will spread the excitation over all point sources of the source model and, as mentioned above, 

lead to the introduction of ghost sources. These are associated with the real sources, and when using 

irregular array geometries they will in general be weaker than the strongest real source(s). We can 

therefore suppress the ghost sources by setting all components in 𝐪̃𝑘+1 below a certain threshold to 

zero. The threshold Tk is computed as being a number Dk > 0 of decibel below the amplitude |𝑞̃𝑘+1,max|  

of the largest element in 𝐪̃𝑘+1: 

max,1
20 ~10 



 k

D

k qT
k

, (16) 

so the elements 𝑞𝑘+1,𝑖 of the next solution estimate 𝐪𝑘+1 are computed in the following way: 





 





otherwise.0

~if~
,1,1

,1

kikik

ik

Tqq
q  (17) 

The dynamic range of retained source amplitudes, Dk, is updated during the iteration in such a way 

that an increasing dynamic range of sources will be included, typically: 

DDD kk 1 . (18) 

In the limiting case when 𝐷𝑘  for 𝑘  , the dynamic range limitation is gradually removed. 

However, the iteration is stopped when:  

2021max1 or ww   kk DD , (19) 

where Dmax is an upper limit on Dk and  is a small number. Since, in general, the source model may 

not be able to completely represent the measured pressure data, F = 0 may not be achievable. But a 

minimum of F, characterized by ‖𝐰‖2 = 0, always exists, explaining the use of ‖𝐰‖2 in the stopping 

criterion. The following values have been found to work in general very well: 
20

max00
max10dB;60dB;0.1;dB1.0;0.1;

D
DDD  0q . (20) 

The upper limiting dynamic range Dmax can be changed to match the quality of data, but the choice 

does not seem to be critical. As will be seen in section 4.2.2, Dmax = 60 dB supports the identification 

of weak sources, even when measurements are slightly noisy. Larger values do not seem to improve 

much. Smaller values may be required for very noisy data. The value of  could be chosen independent 

of Dmax, but the value in equation (20) has been found to work well.  

Starting with only 0.1 dB dynamic range means that only the very strongest source(s) will be 

retained, while all related ghost sources will to be removed, ref. Eq. (17). When we use the dynamic 

range limited source vector as the starting point for the next iteration, the components of the residual  

vector related to the very strongest source(s) have been reduced, and therefore the related ghost 

sources have been reduced correspondingly. Increasing the dynamic range will then cause the next 

level of real sources to be included, while suppressing the related ghost sources, etc. Another aspect 

is the fact that a minimum number of the point sources of the model will be assigned an amplitude 

different from zero, enforcing effectively a sparse solution. 

After the termination of the above algorithm based on steepest descent directions, a good estimate 

of the basic source distribution has been achieved. Proceeding with steepest descent directions will 

typically provide very slow progress, because of “zigzagging”. Experience has shown that good 

progress can be achieved at this point through a single simple scaling step: 

kk qq 1 , (21) 

where the real constant  is chosen to minimize the quadratic function )( kF q . The counter k + 1 

on this scaling step is assigned to the variable K. 

After that, a few Conjugate Gradient iterations without dynamic range limitation can be performed 

to ensure convergence to a point very close to a minimum of the function F.  Usually, the effect on 

the source model and the modelled sound field is very small, because the primary Steepest Descent 

algorithm has already reduced F to be close to a minimum, but it ensures that full convergence has 

been achieved. The stopping criteria used with the conjugate gradient method are similar to those in 
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Eq. (19), typically: 

2212021 oror10 kkkKk wwww    . (22) 

Here, one of the gradient criteria will often be fulfilled, while the steepest descent algorithm is 

terminated mostly by the limit on the iteration count. Further details of the WBH algorithm can be 

found in reference (13). 

The WBH algorithm, which enforces a maximum degree of sparsity in the source distribution, has 

been found to work well at high frequencies, when a suitable array is used at a not too small 

measurement distance. However, at low frequencies WBH easily leads to misleading results, when 

two compact source are so close that available data does not support a resolution of the two with 

beamforming. In that case, the WBH algorithm (and perhaps other sparsity enforcing algorithms) will 

often identify a single compact source at a position between the two real sources, so the user might 

be drawing wrong conclusions about the root cause of the noise. Use of the traditional Tikhonov 

solution of Eq. (6) will in that case typically show a single large oblong source area covering both of 

the two real sources. An example is given in section 4.2.1. To minimize the risk of misleading results,  

it is recommended to use the standard Tikhonov solution up to a transition frequency at approximately 

0.7 times the frequency of half wavelength average array inter-element spacing, and above that 

transition frequency switch to the use of WBH. 

3. ARRAY DESIGN 

As described in the introduction, the method of the present 

paper follows the principles of Compressive Sensing, being 

based on measurements with a random or pseudo-random 

array geometry in combination with an assumed sparsity of 

the coefficient vector of the source model. The circular, 

pseudo-random array geometry used in the real and simulated 

measurements of the present paper is shown in Figure 1. It has 

60 microphones uniformly distributed within a diameter of 1 

metre, so the average element spacing is approximately 12 cm, 

implying a transition frequency close to 1 kHz. The geometry, 

which consists of five identical angular sectors, has been 

optimized for beamforming measurements up to 6 kHz as 

described in reference (3): The maximum sidelobe level was 

minimized subject to the constraint of having the microphones 

uniformly distributed over the array area. Effectively this 

means that the array has an ability to distinguish plane waves from different angles with a minimum 

of angular leakage, but of course with the angular resolution limit set by the array diameter. This kind 

of optimization can be performed on the so-called Array Pattern, which represents the directional 

sensitivity pattern at all frequencies, avoiding the need to optimize the array geometry for specific 

frequencies. In an application for Direction of Arrival (DOA) estimation, this translates directly into 

the columns of the Sensing Matrix being optimized for minimum linear dependency (minimum 

“correlation”, see ref. (15)) between any two of them, which is important for the sparse DOA 

estimation to work properly. For the present near-field WBH application, the sensing matrix A is, of 

course, different from the one used in the far-field DOA application, so it would be interesting to 

investigate its level of linear dependency. An important finding from simulated measurements with 

the chosen array design is that the measurement distance should not be shorter than approximately a 

factor two times the average microphone spacing for the method to work well at the highest 

frequencies. A factor of three is even better. Using the longer measurement distance with WBH has 

the effect of reducing the difference between the DOA application and the WBH application. Another 

view of this is the fact that each source in the WBH source model will expose the microphones over 

a wider area when the measurement distance is increased. To get acceptable low-frequency resolution, 

however, the distance should not be too long either, so overall the best distance seems to be around 

twice the average array inter-element spacing. 

 

Figure 1 – Geometry of the 

applied 60-element planar 

microphone array with 1 m 

diameter. 
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4. SIMULATED MEASUREMENTS 

4.1 Single monopole point source 

The aim of this simulated measurement is to demonstrate with a very simple source configuration: 

i) What happens if Tikhonov regularization is applied above the frequency of half wavelength average 

array element spacing. ii) How much and which kind of improvement is achieved using WBH. 

A monopole point source is located on the array axis at 28 cm from the array plane, while the 

source-model mesh is at 27 cm, and the sound field in reconstructed in a “source plane” 24 cm from 

the array plane. The reconstruction mesh has 51 columns and 51 rows with 2 cm spacing,  covering a 

1 m × 1 m area centred on the array axis, and the source-model mesh is similar, i.e. with 2 cm spacing, 

but it is extended by 6 rows/columns in all four directions. In total, 63 × 63 = 3969 complex point-

source amplitudes must be determined from the 60 measured complex sound-pressure values. WBH 

calculation was performed using dynamic range Dmax equal to 40 dB. 

 

   
Figure 2 – Contour plots of sound intensity in the “source plane”, 24 cm in front of the array plane . 

Display range is 30 dB with 3 dB contour interval, and the same scale is used in all three plots. 

 

   
Figure 3 – Contour plots of sound pressure in the array plane. Display range is 15 dB with 1 dB 

contour interval, and the same scale is used in all three plots. 

 

 
Figure 4 – Relative sound power spectra from the reconstructions based on WBH and on Tikhonov 

regularization, respectively. Power values are calculated by area integration of plots like  those in 
Figure 2. The sound power from the True intensity map is taken as the reference.  
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Figure 2 shows the true sound intensity map on the “source plane” at 4 kHz and the corresponding 

maps calculated from the source model, when Tikhonov regularization is used (Equation (6)) and, 

when the WBH algorithm is used. The WBH map is very close to the true intensity  map, as could be 

expected in the present case, although the source-model plane is 1 cm from the real monopole point 

source. The WBH hotspot is a bit more compact with a slightly higher peak than the corresponding 

one for the true intensity. At the end of the Steepest Descent algor ithm in WBH, there were five point 

sources with non-zero amplitudes in the source model: the one closest to the real source and the four 

nearest to that. The reconstructed field should therefore have four angular periods around the centre 

source. Thus, the Conjugate Gradient algorithm must be responsible for introducing the apparent five 

angular periods in the WBH intensity reconstruction, probably related to to the corresponding angular 

periodicity of the array geometry. The sound intensity reconstruction based on Tikhonov 

regularization shows a small low-level peak at the true source position but, in addition, there are quite 

a lot of ghost sources. These ghost sources are responsible for the focusing of the radiation on the 

microphones that can be seen in Figure 3. 

Figure 3 shows the true sound pressure level (SPL) on the array plane at 4 kHz and the 

corresponding sound pressure level generated by the source model, when Tikhonov regularization and 

WBH, respectively, are used. Looking at the Tikhonov result, it is clear that the 2-norm minimization 

has used the heavily underdetermined nature of the problem to focus sound radiation towards the 

microphones to produce a sound pressure close to the measured pressure, while in all other directions 

the radiated sound is minimized. As can be seen in Figure 4 this means an underestimation of sound 

power. When WBH is used to obtain source model amplitudes, the reconstructed array-plane SPL is 

close the true SPL map, although it has some small ripples. 

Nevertheless, as shown in Figure 4, the sound power is predicted accurately across the full 

frequency range, when WBH is used. When Tikhonov regularization is used, sound power 

underestimation increases quickly with increasing frequency, since the ability of the source mo del to 

focus radiation only towards the microphones increases. 

4.2 Two coherent in-phase monopole point sources 

Two monopole point sources are located 29 cm in front of the array plane at (x,y) coordinates 

(15,15) cm and (-15,-15) cm relative to the array axis, while the source-model mesh is at a distance 

of 25.5 cm, and the sound field is reconstructed in a plane 24 cm from the array plane. Thus, in this 

case, the real sources are 3.5 cm behind the source model. The reconstruction mesh has 51 columns 

and 51 rows with 1 cm spacing, covering a 0.5 m × 0.5 m area centred on the array axis, and the 

source-model mesh is similar, i.e., with 1 cm spacing, but it is extended by 6 rows/columns in all four 

directions. 

In all the simulated measurements of this section, random noise was added to the complex 

microphone pressure data at a level 30 dB below the average sound pressure across the microphones. 

 Equal source levels 

   
Figure 5 – Contour plots of 400 Hz sound intensity in the reconstruction plane 5 cm from the two 

point sources. Display range is 20 dB with 2 dB contour interval. The same scale is used in all plots. 

 

First, we consider the case of equal amplitudes of the two monopoles in order to show the 

advantage of using the Tikhonov regularized solution at the low frequencies. For the WBH 

calculations, the dynamic range Dmax was set to 60 dB. Figure 5 shows sound intensity maps at 400 

Hz. From left to right the true sound intensity, the Tikhonov based reconstruction and the WBH 
reconstruction are shown. Although the Tikhonov result has poor resolution, it indicates quite well 

that there are two sources. WBH, on the other hand, starts by putting a source at the centre position 

between the two real sources, and then later during the iteration it will have to add remote model 
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sources in order for the source model to represent the measured sound pressure data  accurately. But 

the central source stays, which can be misleading.  

It is quite easy to show that the first steepest descent direction in Equation (12) is equivalent to a 

Delay and Sum (DAS) beamforming solution, which has poor low-frequency resolution. The first 

source will therefore be located at the peak of a DAS map, which in this case is midway between the 

two real sources. At higher frequencies DAS has good resolution, so therefore the problem of separate 

sources being replaced by a single central source is probably acceptable above the transition frequency 

described at the end of section 2. 

 10 decibel level difference 
A main purpose of this section is to demonstrate the ability of the WBH method to identify weak 

sources in the presence of strong ones. We use the same setup as in section 4.2.1, except that the lower 

left source is now assigned an excitation 10 dB below that of the upper right source. Figure 6 shows 

the true and the reconstructed sound intensities at 5 kHz with a 20 dB display range. Again, for the 

WBH calculations the dynamic range Dmax was set to 60 dB. Clearly, the two sources are well 

identified, and the picture looks much the same at all frequencies between 1 kHz and 5 kHz. 

 

  
Figure 6 – Contour plots of 5 kHz sound intensity in the reconstruction plane 5 cm from the two 

point sources. Display range is 20 dB with 2 dB contour interval. The same scale i s used in both 

plots. 

 

 
Figure 7 – Sound power spectra obtained by area integration of the true and reconstructed sound 

intensities over the four quadrants in Figure 6. Dmax = 60 dB in WBH calculation. 

 

Figure 7 shows sound power spectra obtained by area integration of sound intensity maps like those 

in Figure 6 over the four quadrants, quadrant 1 (x > 0 and y > 0) containing the strong source and 

quadrant 3 the weak source. For quadrants 1 and 3 both the true and the WBH reconstruction have 

been integrated to get reference sound power data for the two sources, while for the remaining two 

quadrants (2 and 4) only the integrated WBH result is shown.  Up to the transition frequency at 1 kHz 

the Tikhonov regularized solution has been used, while above that frequency, WBH has been applied. 
The sound power of the strongest source is quite accurately identified over the full freq uency range, 

with a minor underestimation below 500 Hz and above 5 kHz. The sound power of the weak source is 

very accurate up to 3 kHz. Above that frequency an increasing underestimation is observed, which 
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remains, however, within 3 dB up to 5 kHz. Above 5 kHz the underestimation seems to increase faster. 

The WBH results of Figure 6 and 7 were obtaining using the high dynamic range Dmax = 60 dB. 

Figure 8 contains sound power spectra like those in Figure 7, the only difference being that a reduced 

dynamic range, Dmax = 40 dB, was used for WBH processing. A similar reduction was applied also to 

the dynamic range used in the Tikhonov regularization at low frequencies. The main effect of the 

reduced dynamic range is a stronger underestimation of the sound power of the weak source. Thus, to 

obtain accurate estimation of relatively weak sources, a high value of Dmax should be used, typically 

60 dB. 

 
Figure 8 – Sound power spectra obtained by area integration of the true and reconstructed sound 

intensities over the four quadrants. Dmax = 40 dB in WBH calculation. 

4.3 Plate in a baffle 
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Figure 9 – Contour plots at 2, 3 and 4 kHz of sound intensity in the reconstruction plane 1 cm above 

the plate. Display range is 20 dB with 2 dB contour interval as in Figure 6. For each frequency, the 

true sound intensity and the WBH reconstruction use the same scale. 

 

The aim of the simulated plate measurements is to show that the WBH method can give quite good 

results, even when the true source distribution is not sparse.  As an example of a more distributed 

source, a baffled, centre-driven, simply supported, 6 mm thick, 40 cm × 40 cm aluminium plate has 

been used. The coincidence frequency for the plate is at 2026 Hz. The vibration pattern was calculated 
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using the formulation by Willams (16), and subsequently the radiated sound field was obtained using 

the discretized Rayleigh integral, approximating the plate velocity distribution by 161 × 161 monopole 

point sources. This allowed the microphone sound-pressure values and the “true” pressure and particle 

velocity in a reconstruction plane 1 cm above the plate to be calculated. As for the simulated 

measurements on two monopole point sources, random noise was added to the complex microphone 

pressure data at a level 30 dB below the average sound pressure across the microphones . The 

reconstruction mesh had 41 × 41 points with 1 cm spacing, covering exactly the plate area, and the 

array was placed 24 cm above the plate. For the WBH sound field reconstruction a source model 

comprising 53 × 53 monopole point sources with 1 cm spacing was located 1 cm below the plate, and 

the dynamic range Dmax was set to 60 dB. 

Figure 9 shows the true sound intensity and the corresponding WBH reconstruction at 2, 3 and 4 

kHz with a 20 dB display range. Overall the reconstruction is good, with a bit too high weight on the 

central area, perhaps because the central sources are first retained during the iterative solution. At 4 

kHz the WBH intensity pattern starts getting distorted, because there are many details which are very 

small compared to the average microphone spacing. The reconstruction accuracy at the highest 

frequencies can be improved by an increase of the measurement distance, probably because  each detail 

will expose a wider array area. At these frequencies a measurement distance around three times the 

average microphone spacing has been found to be a good choice, but of course at the expense of  

slightly poorer low-frequency resolution. 

Figure 10 shows the relative sound power spectrum of the WBH reconstruction: At each frequency, 

the reconstructed and true sound intensity maps (as shown in Figure 9) have been area-integrated, and 

the ratio between the two sound power values are shown in Figure 10 in decibel. There is a consistent 

small underestimation, but up to 5 kHz it remains within 2 dB. Above 5 kHz the underestimation 

increases rapidly. 

 
Figure 10 – Reconstructed sound power relative to true sound power in decibel.  

5. REAL MEASUREMENTS 

5.1 Two mouth simulators 

 

 
Figure 11 – Setup for measurement on two Brüel & Kjær Mouth Simulators Type 4227. 
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Figure 11 shows two Brüel & Kjær Mouth Simulators Type 4227 set up 36 cm from the array and 

with 12 cm separation between the two units. So here, the measurement distance has been increased 

to three times the average microphone spacing. The two sources were excited from two independent 

stationary-random white-noise generators adjusted to equal levels. Beyond the array measurement, a 

scan was also performed with a sound intensity probe across a plane 7 cm from the two sources. 13 × 

6 positions with 3 cm spacing were measured, covering an area of 36 cm × 15 cm. The measurements 

were performed in a normal room with no acoustical treatment.  

The array measurement consisted in simultaneously recording 10 seconds of time data with 12.8 

kHz bandwidth from all array microphones. As described in the first paragraph of section 2, the 

processing started with averaging of the 60 × 60 element cross-spectral matrix between all array 

microphones. Then, a Principal Component decomposition was performed of that matrix, and the 

WBH algorithm was applied to each significant component. In the present case of two independently 

excited sources, there were two such significant principal components. The planar WBH 

reconstruction mesh was in a source plane parallel with the array plane, and it consisted of 41 × 41 

points with 1 cm spacing. The source model mesh was similar to the calculation mesh, but shifted 1.5 

cm away from the array and extended by 6 rows/columns in all four directions. 

Figure 12 shows contour plots of the reconstructed sound intensity for the five 1/3-octave bands at 

2, 2.5, 3.15, 4 and 5 kHz. WBH was applied to FFT spectra with 32 Hz line width, and 1/3 octaves 

were then synthesized. The significant level difference between the two source units in the 5 kHz band 

was consistent with beamforming processing of the same array data and with the intensity maps from 

the intensity probe scan. 

 

     
Figure 12 – Contour plots of reconstructed sound intensity in the 1/3-octave bands at 2, 2.5, 3.15, 4 

and 5 kHz. Display Range is 20 dB. 

 

 
Figure 13 – Comparison of narrow-band sound power spectra from the intensity probe scan and 

from WBH processing of the array data. 

 

Figure 13 compares the sound power spectrum from the intensity probe scan with the sound power 

spectrum from the WBH reconstruction. Both were obtained by area integration of sound intensity 

maps. However, where the WBH map covers a relatively large area in the source plane, the intensity 

probe map covers a rather limited area at 7 cm distance. Consequently, the WBH result will be an 
estimate of the total sound power radiated to a hemisphere, while the intensity-probe result will 

include only a part of that power. The generally slightly higher level of the WBH spectrum in Figure 

13 should therefore be expected. At the lowest frequencies, there are significant effects of a walls, 
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floor and ceiling that influence the Tikhonov regularized reconstruction. Apart from that, the overall 

agreement is very good. 

In many practical applications, for example on engines and gearboxes, the source will be far from 

planar. The sensitivity of the method to sources not being in the assumed/specified source p lane is 

therefore important. This sensitivity is investigated here based on the same array measurement 36 cm 

from the two mouth simulators, but assuming different source distances in the WBH processing. 

Assuming, as an example, the source plane to be 46 cm from the array, the reconstruction will be 

performed in that assumed source plane using a source model 1.5 cm behind the assumed source plane. 

Figure 14 shows the area-integrated sound power spectra obtained with the assumed source plane 

being at distances of 26, 31, 36, 41 and 46 cm from the array. The WBH processing (used above 1 

kHz) seems, in general, to be less sensitive to variations in the assumed source plane distance than 

the Tikhonov solution. The only exception is that use of a much too short assumed source distance 

causes WBH to significantly underestimate the sound power at the highest frequencies. So real sources 

far behind the assumed WBH source plane are significantly underestimated above, in this case, 5 kHz. 

Looking at the high sensitivity of the Tikhonov solution at the lowest frequencies, the level variation 

is close to 5 dB, which is actually equal to 20log(46/26). This indicates that roughly a single point 

source at the assumed distance is given an amplitude to fit the measured level in front of the source. 

This leads to the amplitude of the point source being proportional to the assumed distance.  

 

 
Figure 14 – Comparison of the WBH sound power spectra obtained from the same measurement at a 

distance of 36 cm by assuming different values of the source distance. 

6. CONCLUSIONS 

An iterative algorithm has been described for sparsity enforcing near-field acoustical holography 

over a wide frequency range based on the use of an optimized pseudo-random array geometry. The 

method, here called Wideband Holography (WBH), can be seen as an example of Compressed Sensing. 

It was argued, and demonstrated by a simulated measurement, that it is advantageous to  supplement 

the WBH algorithm with a Tikhonov regularized solution at the lowest frequencies. The algorithm has 

been tested by a series of simulated measurements on point sources and on a plate in a baffle, and 

subsequently by a real measurement on two small loudspeakers. To check the sound power estimation, 

a scanned measurement with a sound intensity probe was performed on the same loudspeaker setup. 

Very good results were in general obtained at frequencies up to four times the normal upper limiting 

frequency for use of the particular array with holography. The focus has been on the ability to locate 

and quantify the main sources (source areas) in terms of sound power within approximately a 10 dB 

dynamic range. Typical application areas could be engines and gearboxes, where measurements at 

close range are often not possible, and the method seems to work very well at the distances that are 

typically realistic in such applications. Engine measurements are also characterized by having sources 

at different distances, and therefore the sensitivity of the WBH algorithm to sources being outside the 

assumed source plane was investigated. In general the method was found to work surprisingly well 

with distributed sources, such as vibrating plates, and with sources outside the assumed source plane. 
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