inter.noise 20141

MELBOURNE AUSTRALIA
16-19 NOVEMBER

p

Acoustic forcing of flexural waves and acoustic fields for a thin
plate in a fluid

Darryl MCMAHON*

Maritime Division, Defence Science and Technology Organisation, HMAS Stirling, WA Australia

ABSTRACT

Consistency with conservation of energy for coupled acoustic fields and plate flexural waves,
discussed in another paper for this conference, is used to derive the amplitude and phase of flexural
and acoustic waves for an infinite thin plate — fluid system excited by an incident acoustic plane
wave. The acoustic interaction of the plate — fluid system is defined by 1. specula reflection from
the plate surface, 2.transmission through the plate material and 3. plate flexural waves taking into
account fluid loading. This reproduces the well-known peak in plate flexural wave amplitudes above
the coincidence frequency where the trace wavenumber of the incident acoustic plane wave along
the plate equals the plate — vacuum flexural wavenumber. This is essentially a resonance with the
resonant frequency that varies with the direction of the incident plane wave. The width of the
resonance is governed by fluid loading which manifests as radiation damping of the flexural waves.
It is found that flexural waves affect the acoustic reflectivity of the plate through coherent
interference of the acoustic field from flexural waves with the specula reflected field, but only if
there is a nonzero phase shift in specula reflection. Energy conservation considerations predict that a
plate becomes acoustically soft close to the resonance condition. A simple formula for the
approximate resonance width is also derived.

Keywords: Acoustic, Plate, Fluid 1-INCE Classification of Subjects Number(s): 21.4, 23, 35.2.2, 42

1. INTRODUCTION

The theory of vibration of a structure immersed in a fluid is important for understanding acoustic
phenomena such as scattering and radiation from ships and submarines, and the effect of structures
on sonar signals and sonar self noise. Some useful concepts are found by just considering a plane
acoustic wave incident onto a flat plate immersed in a fluid, then use well-known relations for
acoustic reflection and transmission at the plate — fluid surface. The latter relations need the
densities and sound speeds for the fluid and plate materials, plus plate thickness, Young’s modulus
and Poisson ratio. These parameters are sufficient for modeling longitudinal (compression) waves in
the fluid and plate, and shear waves in the plate. Consideration of flexural (i.e. bending) waves is
often omitted, motivating the theory of this paper enabling flexural wave effects to be included into
a convenient but artificial model of plate acoustic reflections.

There are treatments of the problem of plane wave acoustic excitation of infinite thin plate
flexural waves in text books (1, 2, 3), but they do not specifically discuss energy densities and
energy density fluxes. Usually it can be taken for granted that energy is conserved in the solutions of
wave equations, however for artificial models such as acoustically hard plates conservation of
energy must be imposed separately. This paper defines a more general artificial plate model, where
idealized acoustically hard and soft plates are special cases, and derives constraints on the model
parameters from conservation of energy.

This paper applies previously derived energy conservation relations (4) to derive in Section 2.1
the amplitudes and phases of acoustically excited thin plate flexural waves while taking into account
fluid loading. Since all waves are travelling waves, fluid loading in this case is just radiation
damping of the flexural waves. The effect of flexural waves on the plate acoustic reflectivity and the
near acoustic field close to a plate are then derived in Sections 2.2 and 2.4 respectively. Section 2.3
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shows that close to the resonance condition, where the trace phase speed of acoustic waves over the
plate equals the phase speed of flexural waves, energy conservation does not allow a plate to be
acoustically hard.

2. FORCED VIBRATION OF A PLATE DERIVED BY AN ENERGY
CONSERVATION METHOD

2.1 Forced vibration of an infinite thin plate in a fluid by an external acoustic plane wave
In a previous paper (4) the following energy conservation equation is derived:

J(xt)  ar(xt) +(WF(X,I)+ u Fa(tx’t)]_WEF(Xlt):WPF(Xlt)_WEF(Xrt): 0 1)

_I_
ot
whereU (x,t)is the sum of kinetic and potential energy densities in the plate, Ug(x,t)is the added
energy density of the plate — fluid system from the added mass of the fluid, I'(x,t)is the energy
density flux in the plate, W (x,t)is the energy density transfer rate between the plate and the fluid,
and Wge (x,t) is the energy density transfer rate between the plate — fluid system and an external
force. Formulae for these functions in terms of the plate wave amplitude are derived in reference
(4). Wpe (x,t) is the energy density transfer rate, either energy lost or gained from the plate — fluid
system, which is nonzero only when it is forced to conform to a particular waveform that is not a
plate — fluid natural mode (4)°. The RHS of eqn. (1) is zero because we are considering the
equilibrium situation of an energy density transfer rate from an external force exactly balanced by
the energy density transfer rate of the plate — fluid system.
Consider the externally applied energy density transfer rate W (x,t) needed to force plate — fluid waves

to satisfy eqn. (1) (i.e.Wgr (x,t) =Wpe (X,t) # 0) supplied by an external acoustic plane wave. Incident and

specula reflected acoustic waves bend the plate such that plate acceleration creates a pressure change that
partially cancels these two external acoustic pressure sources. This pressure change is the fluid loading

effect contained inWpg (x,t) . Consequently flexural waves displace the acoustic reflectivity of the plate-

fluid system away from non-bending plate-fluid specula reflectivity. What proportion of the energy of an
incident acoustic wave that is converted into plate flexural wave energy depends on plate stiffness D, mass
per unit area M and how much of the incident acoustic energy is absorbed and reflected by internal
plate compression and shear mechanisms. In general the incident acoustic energy gets distributed
into specula reflected energy, energy absorbed into plate material longitudinal and shear waves,
plate flexural waves that radiate acoustic energy back into the fluid, and plate flexural waves that
propagate energy along the plate — fluid surface.

An acoustic plane wave from far field (i.e. large z) and incident onto a thin plate has a real wavenumber
vectork! = 0,k! <0,k =0,k =0°. The specula reflected wave has the same k. #0,k! =0,k! =0 butk >0.
The acoustic wave generated by the flexural wave, equivalent to fluid loading, must also have real
wavenumbers equal to that of the incident wave in the x direction and opposite sign in the z direction. The
complex incident, specula reflected and flexural wave generated acoustic wave pressures are given by
respectively

by (x2,t) = pexplikix — ik z —it +ig”] (2a)
Psr(X,Z,t) = p(()*)exp[ik;xﬂk;z—ia)t+i¢(§+)] (2b)
Pe (X, Z,t) = ps exp[ik;x+ik;z—ia)t+i¢fJ (2c)

where pressure amplitudes p((f), p; and phases;ﬁéi),qﬁf distinguish the origin and directions of incident,

specula reflected and plate flexural wave generated acoustic waves. For simplicity the fluid is only on one
side of the plate, and the other side is a vacuum.

2 Five natural non-leaky and leaky flexural wave modes were identified in reference (5) for a thin plate in
a fluid. The solution to any forced vibration problem implies deviations from these natural modes (see
references (6) and (7)).

® Any complex number qis written as q=q +iq"to distinguish the real part g from the imaginary

partq”.
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For later brevity we define a specula reflection coefficient 0 < 2 <1by

p{’)
H="TF (3a)
Po
and specula reflection phase shift—z <6 < 7 by
S=g§) -4 (30)

We assume that the external pressure from incident and specula reflected waves contribute equally to
causing plate bending (i.e. flexural) waves, and the internal pressure of waves within the plate material do
not directly contribute to plate bending waves. So a proportion z of the incident acoustic wave pressure

contributes to plate bending waves, and specula reflection, also a proportion g of the incident acoustic wave

pressure, also contributes to plate bending waves albeit with a phase change 6. The proportion
1— = 0of the incident acoustic wave pressure drives compression and shear waves within the plate

material leading to complete energy absorption within the material’. Commonly used but somewhat
artificial cases are acoustic “hard” materials with g =1(hence bending waves are the only energy loss

mechanism) and acoustic “soft” materials with z =0 (hence no bending waves are excited and all energy is
absorbed by the plate material).
The external acoustic pressure pp (x,t) atz =0 driving the plate flexural wave is
Po (1) = {7 (%,0,1) + e (x,0,1) = eft+ &' Jp{ ) (x,0,1) ’
— 1§+ e Jexplikx — it + g @
The parameter ¢ is used to keep track of the contribution of the specula reflected acoustic wave to driving
flexural waves, and their effect on the net reflectivity of the plate and net pressure at the plate surface. It is
implicit that e =1.
Pp (x,t) can be rewritten in terms of an amplitude p, and phase deviation N from ¢((,’) by

P (X,1) = pee™ exp[ik,’(x —iat+ i¢é’)] (5a)
where
Py = S+ £c0dS)P + (e5in(8)P = ol 1+ &2 + 26 c045) (5b)
i
eiN — (]:-‘Se ) ’_ZSNgz (50)
\/1+g +2&c045) 2 2

Another, later useful, form of eqns. (5a, b, c) introduces a variable 7; related to phase N by

-)
n="_ (11 ccoqs))=cosN)-Z<N<Z (62)
Po 2 2
-)
agdﬂdsbl—nzzﬂg esin(8) =sin(N) -~
0

st% (6b)

Ja denotes the positive square root of any number a so the sign is given explicitly.

The phase N is nonzero only if §=nz,n=0,+1,... wheres =0 for an acoustic hard surface and
& ==+x for an acoustic soft surface.

The plate flexural wave displacement &(x,t)is given by

E(xt) = & explikix—iat +ig, ] %
&£(x,t) is defined as positive for a plate displacement in the +z direction.
Equations (37a) and (37b) of reference (4) relate p; and ¢, to &,and ¢, by

2
pr =Miw’s =207 & = Dgaki (8a)

z

* Energy dissipation within the plate material needs to exist if 1— 4 = 0since a vacuum is present on the far side
of the thin plate.
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T
bi=g-7 (8b)

ky = k2 k2 (8¢c)

1
Herek, = w/c, is the acoustic wavenumber in the fluid with phase speedc,, k; = (Ma)le)Z is the plate—

vacuum flexural wavenumber, M is the plate mass per unit area and D its bending stiffness, and p, is the
fluid density. The plate flexural response to a plane wave acoustic pressure can only be to radiate, so the
added mass is only the imaginary partiM; , anda" is the ratio " =M} /M .

It remains to determine &, pé+),¢x and ¢((,+)from pg‘) and qﬁé‘) by calculating the work rate W (x,t) of
the driving pressure wave pp(X,t) on the plate and equating it toWp (X,t) . Below we use from reference
(4) a phase z,//’(x,t) for energy density and flux variations where

v (x,t)=2(kyx - at) + 24, )
Wee (%,1) is given by

Wer (x,1) = —E'(X, 1) P (X, 1) = —%(é +& po+pp) (10)

The minus sign in eqgn. (10) arises from the acoustic force of the driving pressure being in the opposite
direction —z to plate positive velocity direction +z .
From eqgns. (4) and (10)

Wee (x,1) =W (x, 1) + WL (x,1) (11a)

WE (%) =2 ool oodz + o — g il (k1) +sinfe-+ 4 — 4 Ji—cosy (k1)) (11b)
WS (60) = oot cosr+ g — 47 inly (xt)+sinl + -5 cosly (x.1) (110)

where WS (x,t) are the incident and specula reflected wave parts of the external acoustic work rate for
plate bending. The minus sign in egn. (10) is absorbed by ¢, — 7 + ¢, in the phase terms of eqns. (11b, c).
From eqn. (45b) of reference (4), noting thate’ =0by k) =0,

Wer () = =2 28 1"~k in(y (1)) + @'kt L—cosy (1) (12)
The RHS of egns. (114a, b, ¢) and (12) must be equal for all phases 1//’(x,t) leading to
D&k kit )= o codl + 4, — 47 )+ ecod + g, — 7)) (132)
D&kt = 1o (sin(z + g, — g7 )+ esinlz + g, — 40 (13b)
Using eqn. (3 b), ¢é+) can be eliminated from eqns. (13a, b) giving
D&, (k;4 —k? ): ;zpé‘)((1+ gcos(&))cos(z ¢ — ¢(§‘))+ gsin(5)sin(zz ¢ — ¢é‘))) (13c)
D&a'k] = ypé‘)((lJr gCOS(é'))Sin(zz +h - ¢£‘))— £sin(5) cos(;z +, - ¢(§‘)>) (13d)

When eqgns. (13c, d) are solved forsin(zr+¢X ¢0‘)) and cos(r:+ @, —¢§‘)) we find
D&, esin( 5)(k’4 )+(1+ gcodd)a’k¢

Sin(ﬂ+¢x ¢0 )_ ypof) (1+ gc(;(s(5))2 (;Sin(&))z (13¢)
coslz + D&, (L+scodd))ky’ —ki )-esin(5)a’k{
5( Py — ¢0 ) ,upoi) (1+gcos(5)) (gsin(5))2 (13f)

From eqgns. (13e, f) and (5b) the plate flexural wave amplitude is
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1
= Po 14
Dyl —k? f + (o P (142)
and the phase 7 + ¢, —¢§’) can be determined from
1 ”k4 H kl4 _ k4
tan(7z+¢x —¢é_))= ( +gcos(5))oz’4f +j$ln(5?( el f4) (1)
1+ scod8)k,* —k# ) sin(5)a’k ]
Equation (14a) shows that &, reaches a maximum at k; ==+k; which is a resonance that does not diverge

=

owing to damping by radiation from the plate into the fluid. This resonance is only possible at frequencies
above the coincidence frequency defined at the conditionk, =k .

For brevity define dimensionless and always positive parameter 2, which is equivalent to a phase B , by

a'k?

B= =sin(B)0<B<x 15
JiaF ey 0
kr4 _ k4
sign(k.* —k$)1-p% = x =codB)0<B<~x (15b)
Yl -kt o+ o
From egns. (8a) and (14a)

Pr = Ao =sin(B)p, (16)

From egns. (6a, b), (14a) and (15a, b) we find that egns. (13e, f) become
sin(;r+¢X —¢é‘)): Br+sign(k,* —k{)sign(sin(6))y1- g2 J1-1* =sin(B+N) (17a)
COS(ﬂ' + i, — ¢(§’))= msign(ky! —k§)y1- B2 — psign(sin(8))y1-7,* =codB+N) (17b)

Egns. (17a, b) show that the phase difference between plate flexural waves and the incident acoustic wave
satisfies

7+ —g) =B+N+2nz,n :O,iLJ_r2,...,OSBS7z,—%SNS% (18a)

Combining egns. (18a) with (8b) we obtain the phase difference between acoustic radiation by plate
flexural waves and the incident acoustic wave

¢ — ) :B+N—3?”+2n7z,n:0,il,i2,...,O£BSﬂ,—%SNS% (18b)

The phase of the driving pressure is ¢(§‘) +N'so using eqn. (18b) the phase difference between the flexural
wave acoustic field and the driving field is

e —N=B—37”+2n7r,n —0+1%2,...0<B< ﬁ,—%st% (18c)
At the resonance p; = p, from eqn. (16) so we find the flexural wave generated acoustic field amplitude at

the plate surface equals the acoustic wave amplitude driving the plate flexural waves. Also at the resonance
by egn. (15a) f=1,B=x/2and by egn. (18¢c) ¢, —¢é‘) — N =-7x. Hence the flexural wave driving field

and acoustic field from the plate have opposite phase and so cancel exactly. There remains at the surface
only the component of the acoustic field that drives transmission and absorption by the plate material.

Our results derived from energy transfer rate considerations should agree with results for the acoustic
excitation of flexural waves for fluid loaded plates derived by other methods. The flexural wave mobility is
a convenient comparison function and this is found to be

“HxY -l ee?)

p(x0t) D k*—k!—iak? (19a)
Substituting for k; , k; and a”, eqn. (19a) can be rearranged to
- i

E(xt) _ cod0) pll+ ) (19b)

pI(x0t)  poCo 1-ikoh(py/ oy )cosdONL— (@l ) sin*(6))
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where @ is the angle of the incident wavenumber vector to the plate normal, p, is the plate density and

hthe thickness, and @, =c5+M /D = 24f, where f. is the coincidence frequency. For o << w, reference
(1) eqgn. (6.49) agrees with egn. (19b) for x=1,6 =0 (acoustically hard plate) and & =1(specula reflection
contribution). Reference (1) egn. (6.47) would lead to egn. (19b) for any @ except the denominator of eqn.
(6.47) has an error (w/ o, ) instead of (w/aw, )’ .

2.2 Effect of flexural waves on acoustic absorption and reflection by an infinite thin plate
in a fluid

We seek formulae for flexural wave contributions to acoustic energy absorption and reflection. Denoting
the energy density transfer rate of the incident external acoustic wave onto the plate asW,(x,t), and

denoting W (x,t) as the reflected energy density transfer rate, then W (x,t) =W, (x,t) ~Wg (x,t) is the energy
density transfer rate injected acoustically into the plate — fluid system. Wy (x,t) includes both an acoustic
wave part W (x,t) generated by plate flexural waves and a specula reflected acoustic wave part Wqg(X,t) .
Similarly W (x,t) consists of a flexural wave partWg(x,t)and a plate material acoustic absorption
partWgp (X,t) . The acoustic absorption coefficient y¢ of the plate — fluid system is defined from random
phase averaged energy density transfer rates by y =Wg /W, =(\N_I —VVR)/VV, and the acoustic reflection
coefficient isy, =Wg /W, =1—y. We define flexural wave and plate material acoustic absorption
coefficients e =Wgr /W, and yp =Wgp /W, respectively.
From eqns. (11a, b, c) and (14a) using phase relation eqn. (18a)

Wer (X,1) = ! k—;pf[u COS(B)sin(y/'(x,t))—cos(y/'(x,t)j (20)

206Co Ko sin(B)
The acoustic energy density rate incident onto the plate is phase sensitive and depends on y/’(x,t) and
¢~ giving

W, (x,t) = zp%t—; pC (1— sin(2(¢x - ¢é’)))sin w'(x,t) - cos(2(¢X - %’)))cos(y/’(x,t)) (21a)
o~0 ™0
From eqgns.(17a, b), ¢, —¢(§‘) is related to B+ N and eqn. (21a) becomes
W, (x,t) = 1k pS(1—sin(2B + 2N)sin(y'(x,t)) — cos(2B + 2N )cos(y(x,t)) (21b)
20Co Ko

Comparing the RHS of egns. (20) and (21b) we see that W (x,t) and W, (x,t) are not in phase with each
other which makes the ratio Wge (X,t)/W, (x,t) phase sensitive. Consequently random phase averaged
energy rates are used to define ¢ . From eqgns. (20) and (21a, b)

Vi 1 k; 2.2 1 k; 2

a 20,Cy k_o o 2p,Cy E Pi (222)
__1 Kk oep
' 2p06 ko (220)
The coefficient y . for the average acoustic input energy density transfer rate into flexural waves is
— 2 2
vep = Ve _ (%} - ﬁ{%} = B2+ £ + 25 cod5)) (23)
W, Po Po
7er 1S the sum of two parts
Ver =1+ 1 (242)

where 7(E‘F) is an incident acoustic contribution and ;/(E}) is a specula reflected wave contribution. These are
easily distinguished by the terms that depend on ¢ and give

y = Bl (24b)
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v = BRuPe? + 282 1P e codS) (24c)
The first term on the RHS of egn. (24c) is from the specula reflected generated flexural wave, and the
second term is the effect of coherent interference of the incident wave generated and specula reflected
generated flexural waves.

To derive yg it is first necessary to calculate the coherent sum of specula reflected and plate flexural
wave generated wave pressures. From eqns. (2b, c) the pressure for the reflected wave is
Pr(X,2,1) = Ps(X, Z,1) + P (X, Z,1) (25a)
Using eqns. (25a) and (2b, c) a reflected wave amplitude pg*) and phase ¢F({) are determined from
Pr(x,2,t) = pl explik,x +ik)z —iat +ig{? |+ p, explikix+ik]z — it +ig, |

250
= o) explikix +ik.z — it +ig] -
ot = pi? 4 p? +2c0s(4, —¢£*)) oty (256)

Since by eqn. (8b) ¢; — ") =g — ¢ + b~ A =~ A" 712
i = P + pf + 2sin(g, ~ )l py = pET + B~ 2sin(r + 6, — )0l pg (250)

From phase relations egns. (3b) and (18a) we obtain sin(z + ¢, —¢(§+)) =sin(B+ N —¢) which can be used
in egn. (25d) together with egns. (16), (4) and (3a) to give

)2 +)2 . ). ) s
ok = p P+ p? — 20 ol sin(B - 5)+ epsin(B) (25€)
This shows that the net reflected wave is determined by specula reflection, the acoustic radiation from

flexural waves in the plate, and coherent interference of the specula reflection with the radiation of the
flexural wave due to incident and specula reflected acoustic sources. Using eqns. (16) and (5b)

p? = ﬂz(uz p{” + 26up§) p) cod(8) + £2 DS*)Z) (25f)
Then eqgn. (25€) becomes
pi) = o+ + 71205~ 2808 ) sin(B - 8)+ p2(epl!) | — 28 sin(B)

+28uplpl cos(é)sm( )

The parameter ¢ allows easier identification of 6 different contributions to the reflected acoustic wave. The
first 3 RHS terms of eqn. (25g) are specula reflection, acoustic radiation from the flexural wave generated
by the incident wave and coherent interference of specula reflection with flexural wave acoustic radiation
generated by the incident wave. The last 3 RHS terms are from acoustic radiation of the flexural wave
generated by the specula reflected wave, coherent interference of flexural wave acoustic radiation
generated by the specula reflection with the specula reflection, and coherent interference of specula
reflection excited flexural wave acoustic radiation with the incident wave excited flexural wave acoustic
radiation.

The acoustic energy density transfer rate reflected from the plate is Wy (x,t) that can be derived in terms

(259)

of p&*), ¢F({) and plate phase ¢, similar to eqn. (21a) and the result is

Wi (x,t) = Lk pgj)z (1—sin(2( . — ,(;)))sin(z//’(x,t)) —cos(2(¢X - é*)))cos(t//'(x,t))) (26a)

24Co ko
The random phase averaged reflected energy density transfer rate is
Wo— L Ky
= — 26b
220Gy Ko (200)
Then using eqns. (22b), (26b), (16) and (25g) the reflectivity coefficient is
v (+)?
e =%=pR—2=y2(1+ B21- £ Y1—z—2cod5))+ 2/85ign(k.* —k )1 A2 sin(é))
W, péf) (279)
= 21+ sin?(B)Y1— £ )1 £ — 2cof(s))+ sin(2B)sin(5))
Setting € =1, eqn. (27a) reduces to
Ve = ,uz(l+ 2sign(k,* —k7)4/1— B2 sin( j 2(1+sin(2B)sin(5)) (27b)
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Comparing egn. (27b) with eqn. (27a) we see that ¢ =1leads to cancellation of most flexural wave terms
leaving only the flexural wave contribution from the interference of the incident wave induced flexural
wave acoustic field with the specula reflected field. This flexural wave effect on the reflectivity only exists
ifsin(5)=0 and B =1(i.e. not exactly at the resonance condition). Interestingly the idealized acoustically

hard and soft plate models with sin(s) = 0 have no flexural wave effect on the reflectivity.

2.3 Energy conservation constraints on acoustic excitation of flexural waves of an
infinite thin plate in a fluid

By energy conservation, the average rate of work of the incident acoustic wave on plate flexural waves
cannot exceed the average energy flux contained in the incident acoustic wave. This requires

then 0 <y <1, and from egn. (23) gives

0< p2uPlL+e? + 2ecods))<1 28)
Setting € =0 (i.e. no specula reflection contribution to flexural wave excitation) eqgn. (28) is always satisfied
since #<land ;<1. Settinge =1, when B? <<1there is no problem satisfying eqn. (28) forany 0< <1
and any —1< cos(é)sl. However for 5% ~1 near the resonance the middle function in eqn. (28) would be

greater than 1 for sufficiently large x and cos(é). This leads to an interesting conclusion for understanding

acoustic reflection from a plate when the flexural wave resonance is taken into account. Specula reflection
can create a higher pressure amplitude at the plate surface than in the incident wave, so it might seem the
rate of work by this higher pressure on plate bending waves could exceed the power available from the

incident wave unless the parameters x and cos(&)are constrained to satisfy eqn. (28). This implies that

specula reflection must be significantly modified at the flexural wave resonance condition even if the plate
is acoustically hard away from the resonance”.

Setting % ~1 then eqn. (28) requires

—1<cods)< —1+i2 (29)
2p

Equation (29) eliminates the possibility of an acoustic hard plate defined byyzzl,cos(5)=1. If
cod ) =1were still possible at the resonance, then  is constrained by

OS,uS% (30)

that represents a fairly soft acoustic reflection by a significant energy loss mechanism within the plate
material. If there is no significant energy loss mechanism within the plate, then #? ~1and egn. (29)
becomes
1
~1< cos(5)£—§ (31)

Eqn. (31) is realistic for a thin plate with a vacuum on one side since it approximates a pressure release (i.e.
acoustic soft) surface. For the ideal acoustic soft plate defined by cos(5)= —1so0 that yge =0since the
incident and specula reflected acoustic fields cancel and do no net work on plate flexural waves.

Consider another constraint 0<y <1 which requires the reflected acoustic energy flux to not exceed

the incident acoustic energy flux. This is easily satisfied for weak specula reflections giving x* <<1.

However for no significant energy losses in the plate, 2* ~1 and eqn. (27b) requires

> An acoustically hard surface x=1,6 =0makes the flexural wave driving pressure twice the incident

wave pressure. Real surfaces that approximate this model over some frequency range are used for sonar
signal enhancement at a sensor close to a “signal conditioning” plate. It might seem the average work
rate on the sensor can be four times the average incident wave energy rate, but a typical sensor is almost
acoustically transparent such that energy conservation is assured. However if the plate is itself a sensor
to detect signal induced vibrations, energy conservation limits ¢ and é making an acoustically hard

surface impossible near the resonance condition.
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~1<sin(2B)sin(5)<0 (32)
Using eqn. (15b), egn. (32) shows that
(k}* —k?)sin(5) <0 (33)

At the resonancek,' —k{ =0,2B=r, sin(2B)=0, so egns. (32) and (33) do not constrainsin(5). If
sin(o) = 0thensin(o) must have opposite signs just above and below the resonance, sign(sin(5))=>0 above

the resonance frequency, and sign(sin())<0 below the resonance frequency. Also for 112 =1 eqn. (31)

rules outo =0, so there must be a discontinuity in ¢ at the resonance where & — —¢'. This again shows
that specula reflection and flexural waves must be linked to get consistency with energy conservation near
the resonance condition.

A more detailed analysis of specula reflection from thin plates in a fluid, with a vacuum on one side, using
more detailed acoustic and elasticity theory is needed to check the conclusion that a plate must be
acoustically soft near the resonance condition. If the width of the resonance from radiation damping is quite
narrow, the softness effect may not have been previously noticed experimentally. In many practical cases
the frequency and direction of incident acoustic waves are well away from the resonance condition
enabling almost any level of acoustic hardness / softness of the plate.

2.4 Acoustic field close to the wavenumber resonance condition
The total acoustic field at the plate surface z=0is given by (see eqgns. (2a, b, c))
Pr (X,t) =P (X,O,t) + pSR(XlO’t) + Pe (X,O,t) = (1_ﬂ)pl (X,O,t) + pD(Xﬂt) + P (X,O,t)

= @)l + poeiNtl_SWB)ei(BZ]J exlik;x et +igf ] 0

At the resonance condition B= /2, eqn. (34) shows that the acoustic field py(x,t) from the incident and
specula reflected waves driving the flexural waves is exactly cancelled by the acoustic field produced by
the flexural waves, leaving only the acoustic field component (1— y)pé’) absorbed as compression and shear

waves in the plate material.
Consider the frequency and wave directions for the resonance condition. Equating the incident wave

trace wavenumber on the plate surface to the plate-vacuum flexural wavenumber k; =+k; we find the
resonance condition for angle @ issin(6)=./w,/® . Hence the resonance condition is only physically
possible for w > w, , although the frequency width of the function g from radiation damping (see (15a))
causes some effect at lower frequencies. For k; ~+k; , A can be approximated by

N a'k: /14
r= Yl —k, F + (@, 14F (352)
showing the approximate resonance wavenumber width is
Ak}, ="k 1 4 (35b)
Using the previously derived formula for o” (see Section 2.1) this width at the resonance is
AK ~ 4p°h tan(9) (35¢)

S

3. SUMMARY

This paper has analysed theoretically acoustic wave excitation of thin plate flexural waves taking
into account fluid loading causing radiation damping. An acoustic plane wave excites a flexural
wave in an infinite thin plate with a frequency and direction dependent amplitude and phase given
by eqns. (14a, b). The acoustic field generated by the flexural wave has a phase that tends to cancel
the incident and specula reflected acoustic fields driving the flexural wave. The maximum
cancellation effect occurs at a resonance condition where the trace acoustic phase speed along the
plate equals the phase speed of plate-vacuum flexural waves. Near the resonance condition, energy
conservation requires that the plate specula reflection be acoustically “soft” ruling out the
possibility of an ideal “hard” plate in this case. This example shows that solutions of the wave
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equation can be unphysical for artificial acoustic material assumptions. More detailed acoustic
analysis using realistic plate material properties should be able to relate the parameters & and 6 and

demonstrate their consistency with energy conservation eqgns. (28) and (33).
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