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ABSTRACT 
Consistency with conservation of energy for coupled acoustic fields and plate flexural waves, 

discussed in another paper for this conference, is used to derive the amplitude and phase of flexural 

and acoustic waves for an infinite thin plate – fluid system excited by an incident acoustic plane 

wave. The acoustic interaction of the plate – fluid system is defined by 1. specula reflection from 

the plate surface, 2.transmission through the plate material and 3. plate flexural waves taking in to 

account fluid loading. This reproduces the well-known peak in plate flexural wave amplitudes above 

the coincidence frequency where the trace wavenumber of the incident acoustic plane wave along 

the plate equals the plate – vacuum flexural wavenumber.  This is essentially a resonance with the 

resonant frequency that varies with the direction of the incident plane wave. The width of the 

resonance is governed by fluid loading which manifests as radiation damping of the flexural waves. 

It is found that flexural waves affect the acoustic reflectivity of the plate through coherent 

interference of the acoustic field from flexural waves with the specula reflected field, but only if 

there is a nonzero phase shift in specula reflection. Energy conservation considerations predict that a 

plate becomes acoustically soft close to the resonance condition. A simple formula for the 

approximate resonance width is also derived.  

 

Keywords: Acoustic, Plate, Fluid I-INCE Classification of Subjects Number(s): 21.4, 23, 35.2.2, 42 

1. INTRODUCTION 
The theory of vibration of a structure immersed in a fluid is important for understanding acoustic 

phenomena such as scattering and radiation from ships and submarines, and the effect of structures 

on sonar signals and sonar self noise. Some useful concepts are found by just considering a plane 

acoustic wave incident onto a flat plate immersed in a fluid, then use well -known relations for 

acoustic reflection and transmission at the plate – fluid surface. The latter relations need the 

densities and sound speeds for the fluid and plate materials, plus plate thickness, Young’s modulus 

and Poisson ratio. These parameters are sufficient for modeling longitudinal (compression) waves in 

the fluid and plate, and shear waves in the plate. Consideration of flexural (i.e. bending) waves is 

often omitted, motivating the theory of this paper enabling flexural wave effects to be included into 

a convenient but artificial model of plate acoustic reflections.  

There are treatments of the problem of plane wave acoustic excitation of infinite thin plate 

flexural waves in text books (1, 2, 3), but they do not specifically discuss energy densities and 

energy density fluxes. Usually it can be taken for granted that energy is conserved in the solutions of 

wave equations, however for artificial models such as acoustically hard plates conservation of 

energy must be imposed separately.  This paper defines a more general artificial plate model, where 

idealized acoustically hard and soft plates are special cases, and derives constraints on the model 

parameters from conservation of energy. 

This paper applies previously derived energy conservation relations (4) to derive in Section 2.1 

the amplitudes and phases of acoustically excited thin plate flexural waves while taking into account 

fluid loading. Since all waves are travelling waves, fluid loading in this case is just radiation 

damping of the flexural waves. The effect of flexural waves on the plate acoustic reflectivity and the 

near acoustic field close to a plate are then derived in Sections 2.2 and 2.4 respectively. Section 2.3 

                                                        
1
 darryl.mcmahon@defence.gov.au 



 

Inter-noise 2014  Page 2 of 10 

 

 

shows that close to the resonance condition, where the trace phase speed of acoustic waves over the 

plate equals the phase speed of flexural waves, energy conservation does not allow a plate to be 

acoustically hard.  

2. FORCED VIBRATION OF A PLATE DERIVED BY AN ENERGY 
CONSERVATION METHOD 

2.1 Forced vibration of an infinite thin plate in a fluid by an external acoustic plane wave 
In a previous paper (4) the following energy conservation equation is derived: 
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where ),( txU is the sum of kinetic and potential energy densities in the plate,  ),( txUF is the added 

energy density of the plate – fluid system from the added mass of the fluid, ),( tx is the energy 

density flux in the plate, ),( txWF is the energy density transfer rate between the plate and the fluid, 

and ),( txWEF is the energy density transfer rate between the plate – fluid system and an external 

force. Formulae for these functions in terms of the plate wave amplitude are derived in reference 

(4). ),( txWPF is the energy density transfer rate, either energy lost or gained from the plate – fluid 

system, which is nonzero only when it is forced to conform to a particular waveform that is not a 

plate – fluid natural mode (4)
2
. The RHS of eqn. (1) is zero because we are considering the 

equilibrium situation of an energy density transfer rate from an external force exactly balanced by 

the energy density transfer rate of the plate – fluid system. 

Consider the externally applied energy density transfer rate ),( txWEF needed to force plate – fluid waves 

to satisfy eqn. (1) (i.e. 0),(),(  txWtxW PFEF ) supplied by an external acoustic plane wave. Incident and 

specula reflected acoustic waves bend the plate such that plate acceleration creates a pressure change that 

partially cancels these two external acoustic pressure sources. This pressure change is the fluid loading 

effect contained in ),( txWPF . Consequently flexural waves displace the acoustic reflectivity of the plate-

fluid system away from non-bending plate-fluid specula reflectivity. What proportion of the energy of an 

incident acoustic wave that is converted into plate flexural wave energy depends on plate stiffness D, mass 

per unit area M and how much of the incident acoustic energy is absorbed and reflected by internal 

plate compression and shear mechanisms. In general the incident acoustic energy gets dist ributed 

into specula reflected energy, energy absorbed into plate material longitudinal and shear waves, 

plate flexural waves that radiate acoustic energy  back into the fluid, and plate flexural waves that 

propagate energy along the plate – fluid surface. 

An acoustic plane wave from far field (i.e. large z) and incident onto a thin plate has a real wavenumber 

vector 0,0,0,0  zxzx kkkk
3
. The specula reflected wave has the same 0,0,0  zxx kkk  but 0zk . 

The acoustic wave generated by the flexural wave, equivalent to fluid loading, must also have real 

wavenumbers equal to that of the incident wave in the x direction and opposite sign in the z direction. The 

complex incident, specula reflected and flexural wave generated acoustic wave pressures are given by 

respectively 
      00 exp),,(  itizkixkiptzxp zxI  (2a) 

      00 exp),,(  itizkixkiptzxp zxSR  (2b) 

  fzxfF itizkixkiptzxp   exp),,(  (2c) 

where pressure amplitudes  
0p , fp and phases  

0 , f distinguish the origin and directions of incident, 

specula reflected and plate flexural wave generated acoustic waves. For simplicity the fluid is only on one 

side of the plate, and the other side is a vacuum. 

                                                        
2
 Five natural non-leaky and leaky flexural wave modes were identified in reference (5) for a thin plate in 

a fluid. The solution to any forced vibration problem implies deviations from these natural modes (see 

references (6) and (7)). 
3
 Any complex number q is written as qiqq  to distinguish the real part q from the imaginary 

part q  . 
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For later brevity we define a specula reflection coefficient 10   by 
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and specula reflection phase shift   by 
     00   (3b) 

We assume that the external pressure from incident and specula reflected waves contribute equally to 

causing plate bending (i.e. flexural) waves, and the internal pressure of waves within the plate material do 

not directly contribute to plate bending waves. So a proportion  of the incident acoustic wave pressure 

contributes to plate bending waves, and specula reflection, also a proportion  of the incident acoustic wave 

pressure, also contributes to plate bending waves albeit with a phase change  .  The proportion 

01   of the incident acoustic wave pressure drives compression and shear waves within the plate 

material leading to complete energy absorption within the material
4
. Commonly used but somewhat 

artificial cases are acoustic “hard” materials with 1 (hence bending waves are the only energy loss 

mechanism) and acoustic “soft” materials with 0 (hence no bending waves are excited and all energy is 

absorbed by the plate material).  

The external acoustic pressure ),( txpD at 0z driving the plate flexural wave is 
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The parameter  is used to keep track of the contribution of the specula reflected acoustic wave to driving 

flexural waves, and their effect on the net reflectivity of the plate and net pressure at the plate surface. It is 

implicit that 1 . 

 ),( txpD can be rewritten in terms of an amplitude 0p  and phase deviation from  
0 by 

    00 exp),(  itixkieptxp x
i

D  (5a) 

where 

            cos21sincos1 2
0

22
00   ppp  (5b) 
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Another, later useful, form of eqns. (5a, b, c) introduces a variable related to phase by  

 
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a denotes the positive square root of any number a  so the sign is given explicitly. 

 The phase is nonzero only if ,...1,0,  nn  where 0 for an acoustic hard surface and  

   for an acoustic soft surface. 

 The plate flexural wave displacement ),( tx is given by 

 xx itixkitx   exp),( 0  (7) 

),( tx is defined as positive for a plate displacement in the z direction. 

Equations (37a) and (37b) of reference (4) relate fp and f to 0 and x by 
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4
 Energy dissipation within the plate material needs to exist if 01  since a vacuum is present on the far side 

of the thin plate. 
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2


  xf  (8b) 

22
0 xz kkk   (8c) 

Here 00 /ck  is the acoustic wavenumber in the fluid with phase speed 0c ,  4
1

2 / DMk f  is the plate–

vacuum flexural wavenumber, M is the plate mass per unit area and D its bending stiffness, and 0 is the 

fluid density. The plate flexural response to a plane wave acoustic pressure can only be to radiate, so the 

added mass is only the imaginary part aMi  , and  is the ratio MMa / . 

It remains to determine 0 ,  
0p , x and  

0 from  
0p and  

0 by calculating the work rate ),( txWEF of 

the driving pressure wave ),( txpD on the plate and equating it to ),( txWPF . Below we use from reference 

(4) a phase  tx,   for energy density and flux variations where 

  xx txktx  2)(2,   (9) 

),( txWEF is given by 

  **

4
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),(),(),( DDDEF pptxptxtxW     (10) 

The minus sign in eqn. (10) arises from the acoustic force of the driving pressure being in the opposite 

direction z to plate positive velocity direction z . 

From eqns. (4) and (10) 
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   (11a) 
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 (11c) 

where ),()( txWEF
 are the incident and specula reflected wave parts of the external acoustic work rate for 

plate bending. The minus sign in eqn. (10) is absorbed by xx    in the phase terms of eqns. (11b, c). 

From eqn. (45b) of reference (4), noting that 0 by 0zk , 

         txktxkk
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The RHS of eqns. (11a, b, c) and (12) must be equal for all phases  tx,   leading to 
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Using eqn. (3 b),  
0 can be eliminated from eqns. (13a, b) giving 
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When eqns. (13c, d) are solved for    0sin  x  and    0cos  x  we find 
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From eqns. (13e, f) and (5b) the plate flexural wave amplitude is  
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and the phase   0 x  can be determined from 
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Equation (14a) shows that 0 reaches a maximum at fx kk  which is a resonance that does not diverge 

owing to damping by radiation from the plate into the fluid. This resonance is only possible at frequencies 

above the coincidence frequency defined at the condition fkk 0 .  

For brevity define dimensionless and always positive parameter  , which is equivalent to a phase , by 
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From eqns. (8a) and (14a) 

  00 sin ppp f    (16) 

From eqns. (6a, b), (14a) and (15a, b) we find that eqns. (13e, f) become 

        sin11)(sin)(sin 2244
0  signkksign fxx  (17a) 

        cos1)(sin1)(cos 2244
0  signkksign fxx  (17b) 

Eqns. (17a, b) show that the phase difference between plate flexural waves and the incident acoustic wave 

satisfies 
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Combining eqns. (18a) with (8b) we obtain the phase difference between acoustic radiation by plate 

flexural waves and the incident acoustic wave 
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The phase of the driving pressure is  


0 so using eqn. (18b) the phase difference between the flexural 

wave acoustic field and the driving field is 
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 (18c) 

At the resonance 0pp f   from eqn. (16) so we find the flexural wave generated acoustic field amplitude at 

the plate surface equals the acoustic wave amplitude driving the plate flexural waves. Also at the resonance 

by eqn. (15a) 2/,1   and by eqn. (18c)     
0f . Hence the flexural wave driving field 

and acoustic field from the plate have opposite phase and so cancel exactly. There remains at the surface 

only the component of the acoustic field that drives transmission and absorption by the plate material. 

Our results derived from energy transfer rate considerations should agree with results for the acoustic 

excitation of flexural waves for fluid loaded plates derived by other methods. The flexural wave mobility is 

a convenient comparison function and this is found to be 
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Substituting for xk  , fk and   , eqn. (19a) can be rearranged to 
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where is the angle of the incident wavenumber vector to the plate normal, s is the plate density and 

h the thickness, and cc fDMc  2/2
0  where cf is the coincidence frequency. For c   reference 

(1) eqn. (6.49) agrees with eqn. (19b) for 0,1   (acoustically hard plate) and 1 (specula reflection 

contribution). Reference (1) eqn. (6.47) would lead to eqn. (19b) for any   except the denominator of eqn. 

(6.47) has an error  3/ c instead of  2/ c . 

2.2 Effect of flexural waves on acoustic absorption and reflection by an infinite thin plate 
in a fluid 

We seek formulae for flexural wave contributions to acoustic energy absorption and reflection. Denoting 

the energy density transfer rate of the incident external acoustic wave onto the plate as ),( txWI , and 

denoting ),( txWR as the reflected energy density transfer rate, then ),(),(),( txWtxWtxW RIE  is the energy 

density transfer rate injected acoustically into the plate – fluid system. ),( txWR includes both an acoustic 

wave part ),( txWF generated by plate flexural waves and a specula reflected acoustic wave part ),( txWSR . 

Similarly ),( txWE consists of a flexural wave part ),( txWEF and a plate material acoustic absorption 

part ),( txWEP . The acoustic absorption coefficient E of the plate – fluid system is defined from random 

phase averaged energy density transfer rates by   IRIIEE WWWWW //   and the acoustic reflection 

coefficient is EIRR WW   1/ . We define flexural wave and plate material acoustic absorption 

coefficients IEFEF WW /  and IEPEP WW /  respectively. 

From eqns. (11a, b, c) and (14a) using phase relation eqn. (18a) 

 
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 (20) 

The acoustic energy density rate incident onto the plate is phase sensitive and depends on  tx,   and 

  0x giving 

              txtxp
k

k

c
txW xx

z
I ,cos(2cos),sin(2sin1

2

1
),( 00

2

0

000







   (21a) 

From eqns.(17a, b),   0x  is related to  and eqn. (21a) becomes 

          txtxp
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   (21b) 

Comparing the RHS of eqns. (20) and (21b) we see that ),( txWEF  and ),( txWI are not in phase with each 

other which makes the ratio ),(/),( txWtxW IEF  phase sensitive.  Consequently random phase averaged 

energy rates are used to define EF . From eqns. (20) and (21a, b)  
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 (22b) 

The coefficient EF for the average acoustic input energy density transfer rate into flexural waves is  

       cos21 222
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EF  (23) 

EF is the sum of two parts 

     EFEFEF   (24a) 

where
 
EF  is an incident acoustic contribution and

 
EF  is a specula reflected wave contribution. These are 

easily distinguished by the terms that depend on  and give  
  22 
EF  (24b) 
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    cos2 22222 
EF  (24c) 

The first term on the RHS of eqn. (24c) is from the specula reflected generated flexural wave, and the 

second term is the effect of coherent interference of the incident wave generated and specula reflected 

generated flexural waves.  

To derive R it is first necessary to calculate the coherent sum of specula reflected and plate flexural 

wave generated wave pressures. From eqns. (2b, c) the pressure for the reflected wave is  

),,(),,(),,( tzxptzxptzxp FSRR   (25a) 

Using eqns. (25a) and (2b, c) a reflected wave amplitude  
Rp and phase  

R are determined from 

      
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 (25b) 
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)cos(2   (25c) 

Since by eqn. (8b)       2/000   
xxxff  

             
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22
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)sin(2)sin(2   (25d) 

From phase relations eqns. (3b) and (18a) we obtain  
)sin()sin( 0   

x which can be used 

in eqn. (25d) together with eqns. (16), (4) and (3a) to give 

                sinsin2 000
22

0

2
pppppp fR   (25e) 

This shows that the net reflected wave is determined by specula reflection, the acoustic radiation from 

flexural waves in the plate, and coherent interference of the specula reflection with the radiation of the 

flexural wave due to incident and specula reflected acoustic sources. Using eqns. (16) and (5b) 
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Then eqn. (25e) becomes 
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The parameter   allows easier identification of 6 different contributions to the reflected acoustic wave. The 

first 3 RHS terms of eqn. (25g) are specula reflection, acoustic radiation from the flexural wave generated 

by the incident wave and coherent interference of specula reflection with flexural wave acoustic radiation 

generated by the incident wave. The last 3 RHS terms are from acoustic radiation of the flexural wave 

generated by the specula reflected wave,  coherent interference of flexural wave acoustic radiation 

generated by the specula reflection with the specula reflection, and coherent interference of specula 

reflection excited flexural wave acoustic radiation with the incident wave excited flexural wave acoustic 

radiation. 

The acoustic energy density transfer rate reflected from the plate is ),( txWR that can be derived in terms 

of  
Rp ,  

R and plate phase x  similar to eqn. (21a) and the result is 
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The random phase averaged reflected energy density transfer rate is 
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Then using eqns. (22b), (26b), (16) and (25g) the reflectivity coefficient is 
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Setting 1 , eqn. (27a) reduces to 

       sin2sin1sin1)(21 22442 




  fxR kksign  (27b) 



 

Inter-noise 2014  Page 8 of 10 

 

 

Comparing eqn. (27b) with eqn. (27a) we see that 1 leads to cancellation of most flexural wave terms 

leaving only the flexural wave contribution from the interference of the incident wave induced flexural 

wave acoustic field with the specula reflected field. This flexural wave effect on the reflectivity only exists 

if   0sin   and 1 (i.e. not exactly at the resonance condition). Interestingly the idealized acoustically 

hard and soft plate models with   0sin  have no flexural wave effect on the reflectivity. 

2.3 Energy conservation constraints on acoustic excitation of flexural waves of an 
infinite thin plate in a fluid 

By energy conservation, the average rate of work of the incident acoustic wave on plate flexural waves 

cannot exceed the average energy flux contained in the incident acoustic wave. This requires 

then 10  EF ,and from eqn. (23) gives 

   1cos210 222    (28) 

Setting 0 (i.e. no specula reflection contribution to flexural wave excitation) eqn. (28) is always satisfied 

since 1 and 1 . Setting 1 , when 12  there is no problem satisfying eqn. (28) for any 10    

and any   1cos1   . However for 12   near the resonance the middle function in eqn. (28) would be 

greater than 1 for sufficiently large  and  cos . This leads to an interesting conclusion for understanding 

acoustic reflection from a plate when the flexural wave resonance is taken into account. Specula reflection 

can create a higher pressure amplitude at the plate surface than in the incident wave, so it might seem the 

rate of work by this higher pressure on plate bending waves could exceed the power available from the 

incident wave unless the parameters  and  cos are constrained to satisfy eqn. (28). This implies that 

specula reflection must be significantly modified at the flexural wave resonance condition even if the plate 

is acoustically hard away from the resonance
5
. 

Setting 12   then eqn. (28) requires 

 
22

1
1cos1


   (29) 

Equation (29) eliminates the possibility of an acoustic hard plate defined by   1cos,12   . If 

  1cos  were still possible at the resonance, then  is constrained by 

2

1
0    (30) 

that represents a fairly soft acoustic reflection by a significant energy loss mechanism within the plate 

material. If there is no significant energy loss mechanism within the plate, then 12  and eqn. (29) 

becomes 

 
2

1
cos1    (31) 

Eqn. (31) is realistic for a thin plate with a vacuum on one side since it approximates a pressure release (i.e. 

acoustic soft) surface. For the ideal acoustic soft plate defined by   1cos  so that 0EF since the 

incident and specula reflected acoustic fields cancel and do no net work on plate flexural waves. 

Consider another constraint 10  R  which requires the reflected acoustic energy flux to not exceed 

the incident acoustic energy flux. This is easily satisfied for weak specula reflections giving 12  . 

However for no significant energy losses in the plate, 12   and eqn. (27b) requires  

                                                        
5
 An acoustically hard surface 0,1   makes the flexural wave driving pressure twice the incident 

wave pressure. Real surfaces that approximate this model over some frequency range are used for sonar 

signal enhancement at a sensor close to a “signal conditioning” plate. It might seem the average work 

rate on the sensor can be four times the average incident wave energy rate, but a typical sensor is almost 

acoustically transparent such that energy conservation is assured. However if the plate is itself a sensor 

to detect signal induced vibrations, energy conservation limits  and  making an acoustically hard 

surface impossible near the resonance condition. 
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    0sin2sin1    (32) 

Using eqn. (15b), eqn. (32) shows that 

0)sin()( 44  fx kk  (33) 

At the resonance 044 
fx kk , 2 ,   02sin  , so eqns. (32) and (33) do not constrain  sin . If 

0)sin(  then )sin( must have opposite signs just above and below the resonance, 0))(sin( sign  above 

the resonance frequency, and 0))(sin( sign  below the resonance frequency. Also for 12   eqn. (31) 

rules out 0 , so there must be a discontinuity in   at the resonance where   . This again shows 

that specula reflection and flexural waves must be linked to get consistency with energy conservation near 

the resonance condition. 

A more detailed analysis of specula reflection from thin plates in a fluid, with a vacuum on one side, using 

more detailed acoustic and elasticity theory is needed to check the conclusion that a plate must be 

acoustically soft near the resonance condition. If the width of the resonance from radiation damping is quite 

narrow, the softness effect may not have been previously noticed experimentally. In many practical cases 

the frequency and direction of incident acoustic waves are well away from the resonance condition 

enabling almost any level of acoustic hardness / softness of the plate. 

2.4 Acoustic field close to the wavenumber resonance condition 

The total acoustic field at the plate surface 0z is given by (see eqns. (2a, b, c)) 
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 (34) 

At the resonance condition 2/ , eqn. (34) shows that the acoustic field ),( txpD  from the incident and 

specula reflected waves driving the flexural waves is exactly cancelled by the acoustic field produced by 

the flexural waves, leaving only the acoustic field component     01 p absorbed as compression and shear 

waves in the plate material. 

Consider the frequency and wave directions for the resonance condition. Equating the incident wave 

trace wavenumber on the plate surface to the plate-vacuum flexural wavenumber fx kk   we find the 

resonance condition for angle is    /sin c . Hence the resonance condition is only physically 

possible for c  , although the frequency width of the function   from radiation damping (see (15a)) 

causes some effect at lower frequencies. For fx kk  ,  can be approximated by 


   22
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4

/kkk

/k

ffx

f









  (35a) 

showing the approximate resonance wavenumber width is  

4/kk fx    (35b) 

Using the previously derived formula for  (see Section 2.1) this width at the resonance is  

 



tan

4

0

h
k

s

x   (35c) 

3. SUMMARY 
This paper has analysed theoretically acoustic wave excitation of thin plate flexural waves taking 

into account fluid loading causing radiation damping. An acoustic plane wave excites a flexural 

wave in an infinite thin plate with a frequency and direction dependent amplitude and phase given 

by eqns. (14a, b). The acoustic field generated by the flexural wave has a phase  that tends to cancel 

the incident and specula reflected acoustic fields driving the flexural wave. The maximum 

cancellation effect occurs at a resonance condition where the trace acoustic phase speed along the 

plate equals the phase speed of plate-vacuum flexural waves. Near the resonance condition, energy 

conservation requires that the plate specula reflection be acoustically “soft” ruling out the 

possibility of an ideal “hard” plate in this case. This example shows that solutions of the wave 
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equation can be unphysical for artificial acoustic material assumptions. More detailed acoustic 

analysis using realistic plate material properties should be able to relate the parameters  and and 

demonstrate their consistency with energy conservation eqns. (28) and (33). 
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