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ABSTRACT 

Transient response of complex stiffness system using a green function from the Hilbert Transform and the 

Steady Space Technic. The characteristics of damped structures which are designed to reduce the strength of 

vibrations and shock are expressed in complex stiffness. It is not easy to solve second-order differential 

equations which have complex stiffness because of the governing equation’s singular points that cause time 

solution divergence. To solve this problem, free vibrations of these systems was obtained theoretically by the 

Hilbert Transform and the Steady Space Technic in which singular points are avoided and provides green 

function of the convolution integral. The result that are calculated by the numerical integration process for 

transient responses show accurate amplitude and phase differences. Therefore, it is suggested that this 

method provides an accurate way to estimate the maximum amplitude of time responses. 

 

Keywords: Complex stiffness, Transient, Hilbert transform I-INCE Classification of Subjects Number(s): 
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1. INTRODUCTION 

Viscoelastic material, such as rubber is widely used in industrial field to reduce the strength of 

vibrations and shock. For example rubber mounts are used for vibration isolator and sandwich 

structures which are laminated by viscoelastic and elastic material absorb the vibration energy through 

the viscoelastic layer. These damped structures are easy to make also have good performance. But in 

case of analysis, it is not same with elastic structure analysis because of viscoelastic material’s 

damping ability. 

There are various mathematical models to express the characteristics viscoelastic material. From 

among these, the hysteresis damping is commonly used and easy to apply as a complex stiffness. In 

frequency range, a complex number express the phase difference which causes the energy dissipation 

and so complex number’s character well agree with hysteresis damping. Therefore complex number 

widely used in frequency analysis. 

To get a time solution, equation of motion in frequency range would be changed in to time range. 

Inaudi (1, 2) used the Hilbert Transform and Inverse Fourier transform to make equation of motion in  

time domain and applied the time inverse method to get time response of complex stiffness system also 

suggested the iteration method. M. Salehi (3) used Inverse Fourier Transform for solving time 

response of sandwich structure. Bae (4) suggested numerical method to solve the initial condition 

problem for the five-layered viscoelastic sandwich beam.  

But these methods base on discrete Fourier transform and so signal’s periodicity strongly affects 

the time response. It means that force signals and time responses are periodic signal which can make 

interference effect. And initial condition problem cannot be solved by these methods.  

In this study, continuing the previous study, the way to obtain the 1-DOF transient response of 

complex stiffness which has the initial condition problem was suggested theoretically with equation of 
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motion in complex stiffness system. First, free vibrations of these systems were obtained theoretically 

by the Hilbert Transform and the Steady Space Technic in which provides green func tion of the 

convolution integral. Second, the response at the arbitrary force of this system was obtained by green 

function and convolution integral. At last, from this method identification method also suggested.  

2. HIBERT TRANSFORM AND COMPLEX STIFFNESS SYSTEM 

2.1 Hilbert transform 

The Hilbert transform is a form of integral transform defined by Cauchy’s principle value and 

give us the 2/  phase shift operator and also conserve the energy of signal.  (5) The Hilbert 

transform of function f(x) is given by 

f̂(t) = (1/π)P∫ f(τ) /( 𝑡 − τ )𝑑τ
∞

−∞

 (1) 

Here, Capital letter P means Cauchy’s principle value and its definition is given by  

P∫ 𝑝(𝑦)𝑑𝑦
𝛽

𝛼

= lim
𝜖→0+

(∫ 𝑝(y)𝑑𝑦
𝑦0−𝜖

𝛼

+ ∫ 𝑝(𝑦)𝑑𝑦
𝛽

𝑦0+𝜖

) (2) 

Cauchy’s principle value represents the preceding limiting process also balancing (or canceling) 

process because symmetric or even interval provides cancelation of integration area when p(x) has 

singular point at at z = y0. (6) 

Hilbert transform phase shift operator is explained by Fourier transform. The Hilbert transform 

Eq.(1) can be expressed as convolution integral as follow 

f̂(t) = f(t) ∗ (1 / πt ) (3) 

and the Fourier transform of Eq.(3) becomes 

F̂(ω) = FFT[f̂(t)] = −j sgn(ω)F(ω) (4) 

where,  

sgn(ω) = −1 (for ω < 0), 0 (for ω = 0), 1 (for ω > 0)   

In frequency domain, the Hilbert transform multiply ∓j and F(ω) according to plus and minus 

frequency sign. And here, imaginary number j is phase shift operator and same with ejπ/2 in phase 

plane. Hilbert transform can be easy in frequency domain by only multiplication without any 

integration. Therefore, the process to get Eq. (1) consisted of Fourier transform and multiplication 

and inverse Fourier transform. And this process can be easier if we use the analytic signal as Eq. (5) 

fa(t) = f(t) + jf̂(t) (5) 

And the Fourier transform of Eq. (5) using Eq. (4) is one-side-spectrum or engineering spectrum 

which negative frequency component are zero and analytic signal fa(t) is obtained by inverse 

Fourier transform of one-side-spectrum. 

fa(t) = ∫ 2F(ω)ejωt𝑑ω
∞

0

 (6) 

 But actually, we use the discrete Fourier transform which mean Fourier series and periodicity is 

one of the characteristic of Fourier series. 

2.2 Time Domain Equation of motion in Complex Stiffness System 

The transient response needs the time domain equation of motion. However the complex stiffness 

system typically defined in Frequency domain. Accordingly we used the inverse Fourier transform and 

Hilbert transform to change the domain. 

Frequency domain 1-DOF equation of motion is given 

−ω2mX(ω) + (k + j kη sgn(ω))X(ω) = F(ω) (7) 

using Eq. (4) We have  

−ω2mX(ω) + kX(ω) −  kηX̂(ω) = F(ω) (8) 

and Hilbert transform of Eq. (8) as follow 

−ω2mX̂(ω) + kX̂(ω) +  kηX(ω) = F̂(ω) (9) 
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Multiplying j and Eq. (9), adding to Eq. (8), and applying Eq.(5), we obtain the equation of motion 

as a form Fourier transform of analytic signal. 

−ω2mXa(ω) + kXa(ω) +  jkηXa(ω) = Fa(ω) (10) 

Therefore, inverse Fourier transform of Eq. (10) is time domain equation of motion of complex 

stiffness system and given by  

mẍa(t) + k(1 + jη)xa(t) = fa(t) (11) 

3. TIME ANALYSIS OF COMPLEX STIFFNESS SYSTEM  

3.1 Initial Condition Problem of Complex Stiffness System 

Referenced method (Inaudi, Ifft) start from the analytic signal of force fa(t) and this force signal 

summed as periodic wave because of characteristic of Fourier series. So there is no room for initial 

condition problem.  

Therefore, to find the initial condition problem, we avoid using the discrete Hilbert transform and 

assumed that xa(t) is kind of analytic functions u(t)+j*v(t) containing analytic signals. This 

assumption means that the result of real function u(t),  v(t) are related by phase-shift and xa(t) does 

not separately consists of x(t) and discrete Hilbert transform of x(t).  

Substituting u(t)+j*v(t) with xa(t), Eq. (11) is separated into real part and imaginary part.  

mü(t) + ku(t) − kηv(t) = 0 (12) 

mv̈(t) + kηu(t) + kv(t) = 0 (13) 

Eq. (12) is the real part of Eq. (11) and Eq. (13) is imaginary part. Since Eq. (12,13) is related 

each other, both equation should be solved altogether. So express Eq. (12,13) into Steady space 

technic.  

𝑑

dt
{

u
u̇
v
v̇

} =

[
 
 
 

0 1 0 0
−ωn

2 0 ηω
n
2 0

0 0 0 1
−ηω

n
2 0 −ωn

2 0]
 
 
 
{

u
u̇
v
v̇

} (14) 

Changing Eq. (14) as a simple form, 

{ẋ} = [L]{x} (15) 

Here we can get modal coordinates and Eigen value though the Eigen value problem to find the 

free vibration response. Modal coordinates and Eigen value are given by 

{x} = [ V ]{p} (16) 

{ṗ} = [ V ]−1[ L ][ V ]{p} = [ λ ]{p} (17) 

Where, Modal coordinates and Eigen values are given by  

[ λ ] = [

𝑧 0 0 0
0 𝑧̅ 0 0
0 0 −𝑧̅ 0
0 0 0 −𝑧

]  

[ V ] = [

−(αI + jαR)/s (−αI + jαR)/s (αI − jαR)/s (αI + jαR)/s
−j j j −j

(αR − jαI)/s (αR + jαI)/s −(αR + jαI)/s (−αR + jαI)/s
1 1 1 1

] 

 

s = αR
2 + αI

2, r = √2 + 2/s  

Here, Eigen values of [ λ ] are located in first quadrant and the other Eigen values symmetri cally 

located in each quadrant. 

The solution of Eq. (17) is form of the exponential formula ejzt. So modal coordinate solution 

turn into normal coordinate by using Eq. (16)  

{x} = C1{v⃗ 1}e
zt + C̅1{v⃗̅ 1}e

z̅t + C2{v⃗ 3}e
−z̅t + C̅2{v⃗̅ 3}e

−zt (18) 

Where, C1 = σ1 + ν1,   C2 = σ2 + ν2 

Here, the vimeans column ith vector of modal coordinates [V]. v2 is complex conjugate of v1 

also column vectors v3, v4 have same relation. Followed by these relations that cause cancelation of 
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imaginary part, the components of {x} only remain real value. Free vibration response {x} is given 

by 

{x} =   
eαRt[(A cos(αIt) + B sin (αIt))Re{v⃗ 1} + (B cos(αIt) − A sin (αIt))Im{v⃗ 1}]

e−αRt[(C cos(αIt) + D sin (αIt))Re{v⃗ 3} + (D cos(αIt) − C sin (αIt))Im{v⃗ 3}]
 (19) 

Where, A=2σ1, B=2ν1, C=2σ2, D=2ν2 

Then, we check the boundary condition and initial condition. In a spring mass system, initial 

condition mean amount of total energy which system have it first time. This total energy is diffused 

by hysteresis damping in complex stiffness system and it mean that through the infinite time total 

energy naturally goes to zero. Implying this assumption, unknown quantity A, B are zero.  

Applying t=0 to Eq. (19) and, matrix form of initial condition problem are 

{x(0)} = {

u0

u̇0

v0

v̇0

} = r−1 [

𝛼𝐼𝑠
−1 −𝛼𝑅𝑠−1

0 1
−𝛼𝑅𝑠−1 −𝛼𝐼𝑠

−1

1 0

] {
𝐶
𝐷

} (20) 

Solving upper part matrix (2×2) from Eq. (20) with real part of initial condition u0 and u̇0, 

unknown constant C and D is given by 

C = r(su0 + αRu̇0)/αI , D = ru̇0 (21) 

Applying C and D to lower part matrix (2×2), we have imaginary initial condition v0 and v̇0 

v0 = −(u̇0 + u0αR)/αI , v̇0 = (u̇0αR + u0s)/αI (22) 

Substituting Eq. (21) in Eq. (19) and arranging equation by Eq. (22) We have simple form of free 

vibration response of complex stiffness system, where mass is 1.  

u(t) = e−αRt{u0 cos(αIt) − v0 sin(αIt)} (23) 

u̇(t) = e−αRt{u̇0 cos(αIt) − v̇0 sin(αIt)} (24) 

v(t) = e−αRt{u0 sin(αIt) + v0 cos(αIt)} (25) 

v̇(t) = e−αRt{u̇0 sin(αIt) + v̇0 cos(αIt)} (26) 

These forms of equations satisfy the assumption that xa(t) is related with Hilbert transform 

following by Bedrosian identity, product of lowpass and highpass signals with nonoverlapping 

spectra and Hilbert transform of this signal is defined by a product of the lowpass signal and Hilbert 

transform of the highpass signal. (7) 

3.2 Time Response of complex stiffness system at arbitrary force 

A convolution integral is basically used for getting transient response. As a green function, unit 

impulse response is made of free vibration response substituting initial condition u0 = 0, u̇0 = 1. 

{x(t)} = (1/π)P∫ 𝑓(τ){𝑔(𝑡 − τ)}𝑑τ
𝑡

0

 (27) 

Where, {g(t)} is unit impulse response of complex stiffness system. 

Also this numerical convolution integral can be solved variously depend on how to approximate 

the force signal and we try to approximate in three way 

3.3 Superposition method  

The impulses (Fidt) during the unit time (dt) is represented in Figure 1. And responses due to the 

impulses are produced continually following by arbitrary force signal f(ti). Therefore superposition 

of unit impulse response is transient response of f(ti). Formulation of superposition method is given 

by  

{x(t)} = ∑ us(t − ndt)(Fidt{xu(t − ndt)})
N

n=1
/m (28) 

Where, us(t) is unit step function and xu(t) is unite impulse response which meet the initial 

condition u0 = 0, u̇0 = 1. And Eq. (27) goes to form of convolution integral when N→∞ and dt→0 
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Figure 1 – Zero order discrete arbitrary force signal f(ti)  

3.4 Superposition method  

This method used same force approximation which the magnitude of unit impulses  is constant 

during small time dt. But we used free vibration response and analytic convolution integral ( from 0 

to dt) to predict the next time step value. The solution of 1-DOF differential equation is summation 

of particular solution and homogeneous solution so that the next time step value can be obtained by 

adding free vibration response to analytic convolution integral. For the convenience, defining the 

exponential sine and cosine integration  

ESI = ∫ e−αR(t−τ)sin (αI(t − τ))dτ
dt

0

, ECI = ∫ e−αR(t−τ)cos (αI(t − τ))dτ
dt

0

 (29) 

Using Eq. (29) zero order transient response due to f(ti) is given by 

ui+1 = Fi+1ESI/(αIm) + e−αRt{ui cos(αIdt) − vi sin(αIdt)} (30) 

u̇i+1 = (Fi+1/m)( ECI − αRESI/αI) + e−αRt{u̇0 cos(αIdt) − v̇0 sin(αIdt)} (31) 

From Eq. (22), (30) and (31), predicting the next time step value is possible by previous time step 

value when we know the system’s Eigen value. And also vi+1 and v̇i+1 can be calculate in the 

similar way. 

vi+1 = Fi+1ECI/(αIm) + e−αRt{u0 sin(αIt) + v0 cos(αIt)} (32) 

v̇i+1 = (Fi+1/m)( ESI − αRECI/αI) + e−αRt{u̇0 sin(αIt) + v̇0 cos(αIt)} (33) 

3.5 Superposition method  

Referring to Fig.2 in the first order approximation, force signal assumed as a linear function. And 

difference between Fig. 1 and Fig. 2 representing the force signal is small triangles which means 

linear component. So adding a linear component of integration to the Eq. (30,31) is the way to get 

time solution. In common with zero order approximation, let’s define linear component of 

integration  

LESI(t) = ∫ τe−αR(t−τ)sin (αI(t − τ))dτ
t

0

, LECI(t) = ∫ τe−αR(t−τ)cos (αI(t − τ))dτ
t

0

 (34) 

Using Eq. (34) first order transient response due to f(ti) is given by 

ui+1 = ∆FiLESI(dt)/(αImdt) + FiESI(dt)/(αIm) + e−αRt{ui cos(αIdt) − vi sin(αIdt)} (35) 

u̇i+1 = ∆Fi+1( LECI(dt) − αRLESI(dt)/αI)/(mdt) + Fi+1( ECI(dt) − αRESI(dt)/αI)/ m 

+e−αRt{u̇0 cos(αIdt) − v̇0 sin(αIdt)} 
(36) 
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Again, vi+1 , v̇i+1 can be calculate in the similar way.  

vi+1 = ∆FiLECI(dt)/(αImdt) + FiECI(dt)/(αIm) + e−αRte−αRt{u0 sin(αIt) + v0 cos(αIt)} (37) 

v̇i+1 = ∆Fi+1( LESI(dt) − αRLECI(dt)/αI)/(mdt) + Fi+1( ESI(dt) − αRECI(dt)/αI)/m 

+e−αRt{u̇0 sin(αIdt) + v̇0 cos(αIdt)} 
(38) 

 

Figure 2 – Discrete arbitrary force signal f(ti)  

4. NUMERICAL EXAMPLE 

4.1 Initial condition problem 

In order to illustrate the Bedrosian identity described in section 3.1, we make the figure of given 

free vibration. Mass, stiffness and loss factor of system are given by 𝑚 = 1𝑘𝑔, k = (100π)2N/m2, 

𝜂 = 0.2 and governing equation is 

ẍa(t) + (100π)2N/m2(1 + 0.2j)xa(t) = 0 (39) 

With u(0)=0, u ̇(0)=1, form Eq.(23) to Eq. (26), time solutions of u(t), u̇(t), v(t), v̇(t) are 

represented in Fig.3 and it is the analytic impulse responses of complex stiffness system. In each 

graph in Fig. 4, u(t) and u̇(t) have π/2 phase difference with v(t) and v̇(t) following by Bedrosian 

identity. 

 

Figure 3 – Free vibration response u(t), u̇(t), v(t), v̇(t) of complex stiffness system 
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4.2 Transient response of triangular force  

With the same governing Eq. (39), in order to compare the approximation method, the transient 

response of triangular force is calculated. Let the triangular force signal are  

Tri(t) = 20t   [  t < t0 ], −20(t − t0)   [  t0 ≤ t < 2t0 ], 0 (t ≥ 2t0) (40) 

Triangular force signal in Fig. 3 is linear and discontinues at two points t = t0, 2t0 and slop of 

triangle is 20, t0 = 0.25𝑠.  

 

Figure 4 – triangular force signal 

Convolution integral of force signal in Fig. 4 can be calculated as the same way to get Eq.  (35) 

and (36) by separating an interval of integration. With zero initial condition, integration of triangular 

force from 0 to t0 are given by 

u(t) = −20LESI(t)/αI , u̇i+1 = 20( LECI(t) − αRLESI(t)/αI)  (41) 

The response from t0 to 2t0 is represented as a superposition of free vibration and forced 

vibration. It follows as 

u(t + t0) = −20LESI(t)/αI + 20t0ESI(t)/αI + e−αRt{ut0 cos(αIt) − vt0 sin(αIt)}  (42) 

u̇(t + t0) = −20( LECI(t) − αRLESI(t)/αI) + 20t0( ECI(t) − αRESI(t)/αI) 
+e−αRt{u̇t0 cos(αIt) − v̇t0 sin(αIt)} 

(43) 

The response after 2t0 is given by only form of free vibration   

u(t + 2t0) = e−αRt{u2t0 cos(αIt) − v2t0 sin(αIt)}  (44) 

u̇(t + 2t0) = e−αRt{u̇2t0 cos(αIt) − v̇2t0 sin(αIt)}  (45) 

4.3 Transient response of triangular force  

In Fig.5 we compare the each approximation method according to the time interval dt. The time 

interval is set for dt=0.25s which is the roughest interval expressing the triangular force. Except for 

First order approximation, all other approximations show the inaccurate prediction and zero order 

approximation bring about time delay. 

 

Figure 5 – Transient response of complex stiffness 1-dof system dt=0.25s , dt=0.05s 
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In the next figure we apply the time interval for dt = 0.05s and zero order approximation again 

generates time delay because of using forward difference. Also superposition method show wrong 

prediction on account of long time interval dt which does not show the natural frequency of free 

vibration response. But when the time interval became short and short in Fig.5 three methods give us 

almost same results. 

 

Figure 6 – Transient response of complex stiffness 1-dof system dt=0.02s , dt=0.01s 

Referring these results in Fig 6, Fig 7, arbitrary excitation force time interval in order to obtain a 

response, should be chosen as small as the shortest time interval of the triangular wave interval for 

first order approximation. Otherwise, response of this system will have a time delay or ignore the 

short-step force signal.  

4.4 Transient response of triangular force  

Transient response with initial condition problem is solved by first order approximation method. 

Characteristic of system are given m = 1kg, k = (100π)2, η = 0.2 and force shape is half sine 

wave. The initial condition of system is u(0)=5e-5m, u̇(0)=3e-2m/s 

In Fig.7 Response occur t=0 because of Initial condition and force start to excite the system at 

t=0.1s so it moves again from that time. 

 

  

Figure 7 – Transient response with initial condition 
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To check the accuracy of response, let us compare the impulse response of FRF. Discrete Fourier 

transform of impulse response and transfer function have almost same magnitude but it has phase 

difference at low frequency. In Fig. 8 two line’s gap is a phase difference ϕ. These phase differences 

make a response to distort and delay thus phase differences function help to modify it. A phase 

difference is derived by subtracting the phase tangent of each transfer function. Phase difference of 

complex stiffness system and suggest Eq. (46) are given by 

tan (𝜙) =
2𝑎(𝜔n

2 − 𝜔2)𝜔 + 𝜔n
2(−𝑠 + 𝜔2)𝜂

(𝜔n
2 − 𝜔2)(𝑠 − 𝜔2) + 2𝑎𝜔n

2𝜔𝜂
 (46) 
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Figure 8 – Transient response with initial condition 

Fig. 9 show the effeteness of phase difference function, transient response is modified small 

amount. Because both phase functions have almost same phase except for low frequency. And even 

though it has the highest phase difference in low frequency, normal excitation which consist of width 

frequency range periodic force effect was not affected heavily. But in case of only low frequency 

force, transient response should be modified by phase differences function.  

 

Figure 9 – The effect of phase difference function 

5. CONCLUSIONS  

The method to get transient response of complex stiffness system which contain initial condition 

problem was suggested in this paper, the Hilbert Transform and the Steady Space Technic are used to 

get free vibration response of this system and derived equation give us green function of convolution 

integral. As a way of numerical integration, convolution integral is used for small discrete time step 

integration to predict next time step value and superposition method and zero and first order 

approximation method are introduced and compared. The results of comparison show that first order 

approximation is the most accurate in those methods.  

Checking the mag and phase graph, Suggest method has a phase difference but it is affect little in 

case of normal excitation or can be modify by phase difference function.  
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