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ABSTRACT 

In order to analyze the vibration and the sound radiation from the waveguide structures, it is important to 
understand the dispersion relations of the waves sustained in the waveguides. By using the sensor arrays 
mounted on the surface of the waveguides, these dispersion characteristics would be constructed from the 
structural and acoustic responses at the sensor locations. In this study, the waveguide finite and boundary 
element method is adopted to predict the dispersion curves for a water-loaded cylindrical shell. The structural 
responses and near-field acoustic responses of the shell are used to create the dispersion diagrams and the 
results are compared. Also the effect of the sensor spacing is examined for the two different spans. It was 
found from this study that the respective dispersion curves constructed from the structural and acoustic 
signals are considerably different. Also it was seen that the spatial aliasing takes place in the dispersion 
diagram as the sensor span grows.  
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1. INTRODUCTION 
It is called waveguide structures which have a constant cross-section, such as beams, plates, pipes, 

and cylinders. In order to analyze the vibration and sound radiation of these waveguide structures, it is 
important to understand the dispersion relations of the waves sustained in the waveguides. The 
dispersion relations of the waves are represented by the dispersion curves. The dispersion curve is the 
typical index showing the propagation characteristics of elastic waves at specific frequency. In this 
paper, the waveguide finite element method is used to investigate structural and acoustic responses of 
the submerged shell(1). The waveguide FE is an efficient method to analysis the wave propagation in 
waveguide structures, using an assumption that the vibration modes of the cross section of the 
waveguides are propagating harmonically along the longitudinal direction. 

The waveguide FEs are used to represent structures which have constant cross-sections along the 
longitudinal direction. Thus, it has less degree of freedom and operational time than other 3D 
domain numerical approaches. This takes advantages in the analysis of the waveguide structures 
which have arbitrary cross-sections that are not suitable for theoretical analysis(2).  

If the waveguide structures are water-loaded in the exterior, it needs additional boundary 
elements for the fluid part. The waveguide BEs is applied to the 2D cross-section of the structure 
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similarly to the 2D boundary element but allow the harmonic wave propagation along the 
longitudinal direction. There are a few previous studies utilizing the waveguide FEs and BEs to 
analyze the propagating characteristics of the waves in the waveguides. C.-M. Nilsson calculated the 
sound radiated by rail way and tram rails by using the waveguide BE from the forced vibration 
responses obtained from the waveguide FE(3). J. Ryue has used coupling equations between the 
waveguide FEs and BEs to predict the vibration of the water-loaded pipe(4). 

In this study, the waveguide FE and BE method is adopted to predict the propagation 
characteristics of the waves of the water-loaded cylindrical shell. From this method, the dispersion 
diagrams using spatial structural and near-field acoustic responses are obtained and compared. To 
understand the effect of array length and sensor pacing on dispersion diagrams, two different array 
lengths and sensor spacing are examined in the reconstruction of dispersion diagrams. 

2. Waveguide FEM/BEM 

2.1 Waveguide FEM 

The waveguide FE method uses a 2D geometry of the cross section with an assumption that 

vibration modes are propagating along the longitudinal direction harmonically, that is, xje  , where 
x  denotes the longitudinal axis,   is the wavenumber along the x  axis. This approach is also 
called semi-analytical FE (SAFE) because it uses a theoretical solution along the longitudinal 
direction(5).  

In this study, the plate element of waveguide FE is used to model the cylindrical shell. The 
governing equation for the plate elements of waveguide FE is given by 
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where 4K , 2K , 1K and 0K  is stiffness matrices of the plate element, M  is a mass matrix,   is 

an angular frequency,  zyxu ,,  is a displacement vector of the 2D cross section. This 

displacement vector is defined by following equation. 
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where, U
~

 denotes the deformation of the cross-section. When Eqn. (2) is substituted into Eqn. 
(1), the equation of motions of the plate element becomes 
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Eqn. (3) is a function of two parameters of the frequency and the wavenumber. So if one of them 
is given, it can be solved by the eigenvalue analysis. When the wavenumber is given, the equation 
becomes the eigenvalue problem for the frequency. On the other hand, when the frequency is given, 
the equation becomes the polynomial eigenvalue problem for the wavenumber. 

 

2.2 Waveguide BEM 

In the case of the exterior water-loaded waveguide structure problem, it can analyze the radiation 
phenomena by using the waveguide BE method. The waveguide BEs which models a 2D geometry of 
the cross section is similar to the 2D conventional boundary elements, but considers the wave 
propagation along the longitudinal direction. The fundamental equation of waveguide BE is given by 

  0222  k  (4)

where 2  is the operator of 2D Laplace,   is the velocity potential, k  is the acoustic 
wavenumber of external fluid. Here, k  is defined by c/  where c  is the wave speed in the 

fluid. The velocity potential   is the function of normal directional particle velocity nv  and 

acoustic pressure p  and defined by 
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where 0  is the density of the external fluid. 

Eqn. (4) has a term of  22 k , which differs from the 2D Helmholtz equation. In the case of 
22 k , Eqn. (4) represents waves propagating outwards, on the other hand, the case of 22 k  

means near-field waves which decay rapidly along the radial direction. 
The boundary condition of the 2D cross section model is defined by following formula. 
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Here, * denotes complex conjugate and   means the circumference of the 2D cross-section. 
From the Eqns (4) and (6), the governing equation of the waveguide BEs is given by 
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where   ,H  and   ,G  is the matrices of the function of wavenumber and frequency 

 

2.3 Coupling of waveguide FE/BE 

The governing equation of waveguide structures excited by external forces and fluid loads is 
given by 

   0
~

1
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where eF  is the external force vector and pC1  is the force from the fluid loading, 1C  is the 

coupling matrix which defines the coupled dofs between the structure and the fluid. To define the 
coupling equation, it needs a continuity condition between the waveguide FEs and BEs, given by 
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where 2C  is the coupling matrix which converts the Cartesian coordinate system to the normal 

direction system. Eqn. (9) means the normal velocity of the structure is equal to the particle velocity 
of the boundary of the structure. 

From the Eqns. (7)~ (9), the fully coupled equation is defined by 
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If the external force in the right-hand side is given, the displacements and pressures on the 
waveguide are solved.  

3. Numerical analysis 
In this section, the waveguide FE/BE analysis is performed to obtain the structural and near-field 

acoustic responses of the water-loaded cylindrical shell. These spatial responses are utilized to 
estimate the structural and acoustic dispersion diagrams. 

3.1 Analysis model 

Figure 1 is the numerical analysis model of a water-loaded cylindrical shell. This model consists 
of plate elements for the structure part (waveguide FE) and 3 noded elements for the external water 
(waveguide BE). The number of nodes and elements for the waveguide FE are set to 64, respectively, 
and 128 and 64 for the waveguide BE. Table 1 shows the material properties of the cylindrical shell 
and the external water. 
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Figure 1 – The waveguide FE/BE model of the cylindrical shell 

 

Table 1 – Material properties 

Material Steel Material Water 

Elastic modulus, E  200GPa Wave speed, c  1486 

Poisson ratio,  0.2792 Density, 0  998 

Density,   7900kg/m3   

Damping,  0.001   

 

3.2 Wave analysis of the cylindrical shell model 

For a unit-force applied, the structural and near-field acoustic responses was calculated by using 
the coupling equation of the WFE/BE. Figure 2 shows the cross-sectional model with the excitation 
and response points. Figures 3 and 4 show the spatial structural responses and acoustic pressures at 
300Hz and 1500Hz along the cylinder. The origin in x  axis represents a point where the excitation 
is applied. 

The dispersion diagrams can be constructed by using the Fourier transform of these spatial 
structural and acoustic responses. In the wavenumber domain, the responses will have resonance 
peaks at the wavenumbers of the propagating waves. These peaks appeared distinctively in the 
dispersion diagrams at specific frequency.  

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y (m)

z 
(m

)

Response point

45 degree

Excitation point

 

Figure 2 – The excitation and response point of the cylindrical shell 
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(a) 300 Hz                               (b) 1500 Hz 

Figure 3 – The structural spatial response according to the frequency 
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(a) 300 Hz                               (b) 1500 Hz 

Figure 4 – The near-field acoustic spatial response according to the frequency 

 

Figure 5 shows the structural and acoustic dispersion diagrams of the cylindrical shell constructed. In 
Figure 5, the redder regions represent the stronger responses. The longitudinal and torsional waves 
are displayed with the straight lines. Because the wave speeds of the longitudinal waves are the 
faster than those of the torsional waves, the longitudinal wave lines have lower slopes than the 
torsional waves in the dispersion diagrams. The bending waves are represented with the curved lines  
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Figure 5 – The dispersion diagrams of the cylindrical shell produced by (a) structural response, (b) acoustic 

response.  
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because they are dispersive. 
Since the directions of the excitation and the responses chosen are perpendicular to the 

circumference of the cylinder, the bending waves appear mainly in the structural dispersion diagram 
in Figure 5(a). On the other hand, the acoustic dispersion diagram in Figure 5(b) shows the 
longitudinal, torsional waves additionally, because the acoustic waves are induced by all of these 
structural vibrations. Especially, the acoustic dispersion diagram shows strong responses in 
wavenumber regions where the structural wave travels faster than the acoustic wave. It is known that 
the structural waves of k  do not radiate well but the dispersion diagram in Figure 5(b) reveals 
considerably large pressures even in this subsonic ranges. That is because the near-field pressures 
are used in Figure 5(b), which are calculated on the cylinder surface.  

To examine the decaying features of the acoustic signals, the characteristics of the dispersion 
diagrams are built and compared by increasing the distance between the cylinder and receiving 
points in water. The distance of the receiving point from the center of the cylindrical shell was set to 
1m, 2m and 3m, respectively. Figure 6 shows the acoustic dispersion diagrams according to the 
distanced of the sensor position from the center of the shell. 

Figure 6 shows that the near-field waves disappear rapidly as the distance increases from the 
center of the cylinder. In the case of the distance of 3m, only the supersonic structural waves, mainly 
the longitudinal and torsional waves remain, in addition to the free acoustic wave. It is sure that the 
bending waves hardly contribute to the far field radiation.  
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(a) The distance: 1.0 meter     (b) The distance: 2.0 meter 
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(c) The distance: 3.0 meter 

Figure 6 – The acoustic dispersion diagram for various distances between the cylinder and receiving points. 

3.3 Estimation of the dispersion diagrams using the responses of array sensors 

In this section, the spatial responses at the array sensor positions mounted on the cylinder are 
used to construct the dispersion diagrams. In terms of the self-noise of the array sensors, the 
responses at the sensor position are analyzed. To obtain these dispersion diagrams, the sensor array 
was set to 10m long from the excitation position of x=0. The spans between the two adjacent sensors 
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are chosen to 0.05m and 0.15m. So the total numbers of sensors for these two cases are 201 and 67, 
respectively. 

Figures 7 and 8 show the spatial structural and acoustic responses of the sensor positions at 
300Hz and 1500Hz for the two sensor spans. The spatial responses of 300Hz in Figures 7 and 8 are 
almost the same despite the different sensor spacing. However, the responses at 1500Hz show 
aliasing problems when the sensor spacing becomes 0.15m. This aliasing in spatial domain makes  
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(a) 300 Hz                               (b) 1500 Hz 

Figure 7 – The structural spatial responses of the cylindrical shell for the two different sensor spacing 
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(a) 300 Hz                               (b) 1500 Hz 

Figure 8 – The acoustic spatial responses of the cylindrical shell for the two different sensor spacing 
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(a) Sensor spacing: 0.05 meter                 (b) Sensor spacing: 0.15 meter 

Figure 9 – The structural dispersion diagrams according to sensor spacing 
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(a) Sensor spacing: 0.05 meter                 (b) Sensor spacing: 0.15 meter 

Figure 10 – The acoustic dispersion diagrams estimated according to sensor spacing 

 
high wavenumber signals to be seen as low wavenumber signals. Therefore, the wavenumber range 

in dispersion diagrams is bounded to 2π/d, where d is the sensor spacing.  
Figures 9 and 10 show the structural and acoustic dispersion diagrams estimated by using the 

0.05m and 0.15m sensor spacing. Figures 9(b) and 10(b) reveals the distortion of the dispsersion 
diagrams caused by the spatial aliasing when the 0.15m sensor spacing is used. This problem appears 
more distinctively in the acoustic dispersion diagrams.  

 

4. Conclusion 
The dispersion diagrams have the information about the dispersion relations of the waves sustained 

in waveguide structures. In this paper, a numerical analysis method, called the waveguide FE/BE was 
used to estimate the dispersion diagrams of a water-loaded cylindrical shell to figure out the dispersion 
characteristic. Two different dispersion diagrams were constructed by using structural and acoustic 
responses, respectively. Two sensor spacing was regarded to figure out the effect of the distance of 
sensor spacing. It was found that the respective dispersion diagrams constructed from the structural 
and acoustic signals are considerably different. It was seen that the near-field waves are strongly 
contribute to the acoustic dispersion diagram. The aliasing problem takes place in the spatial 
responses when the sensor spacing grows. This aliasing in spatial domain makes high wavenumber 
signals to be seen as low wavenumber signals. It may lead to the wrong interpretation of the 
measured signals by the array sensors. In future works, the dynamic excitation forces generated by 
the operating machines onboard will be included and examine the structural/acoustic dispersion 
diagrams to see the effect of the internal structures. 
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