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ABSTRACT
In the present report, a variable-grid technique for the CIP (constrained interpolation profile) method is ap-
plied to three-dimensional wave-based simulation of sound propagation in an outdoor field. This technique is
based on the sub-grid technique and provides a procedure for dynamic setting of subgridded areas according
to wave propagation to achieve high accuracy with low computational costs. The effectiveness of proposed
technique is examined in a practical outdoor field including a complex topography and a building. Sound
propagation in the three-dimensional outdoor field and how the subgridded areas follow waves are visualized
and shown. The examinations reveal that proposed technique has almost the same accuracy with that the
normal CIP simulation with a finer uniform-grid system has. Also, the simulation applying the variable-grid
system requires about one-fourth of computer memory and one-fifth of computational time relative to those
the normal finer simulation requires.
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1. INTRODUCTION
The constrained interpolation profile (CIP) method was developed in the field of fluid dynamics as a

kind of the method of characteristics (MOC)(1, 2). This method has been applied to numerical simulations
of sound field in time domain(3, 4, 5) as it has an advantage of low numerical dispersion over the finite-
difference time-domain (FDTD) method widely used for sound field analysis. Additionally, a spatial grid size
and a time step size which the CIP method requires for adequate accuracy are larger than those the FDTD
method requires. In the CIP method, a time step size is free from Courant condition. The CIP method does
not require a small time step size for stability, resulting in a reduction of total computational time.

However, results of CIP simulations involve errors due to numerical diffusion. Attenuation of sound waves
with their propagation exceeds physical phenomena, e.g. geometrical attenuation. These errors are unignor-
able in calculations of sound propagation in large-scale sound fields such as an outdoor field. To divide
calculated field with smaller grid size can reduce these errors. However, it increases the number of grids and
results in significant increase of computational time and required memory.

We have proposed a variable-grid technique for the CIP method to accurately calculate sound fields with
low computational costs(5). This technique is based on the sub-grid technique for the CIP method (6) and pro-
vides a procedure for dynamic setting of subgridded areas according to wave propagation. The effectiveness
of proposed method was confirmed in basic examinations in a two-dimensinal free field(5). This report shows
examinations of the CIP simulation with the variable-grid technique in a three-dimensional sound feild. A
practical outdoor field is assumed for the examinations. Sound propagation in the field including a complex
topography and a building is calculated using proposed method.

2. NUMERICAL METHOD
2.1 CIP method

The CIP method for acoustic simulation computes advection equations derived from the governing equa-
tions of sound fields. The equation of continuity and the equation of motion for a lossless linear sound field
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are transformed into
∂t p+ cZ∂xvx = 0, Z∂tvx + c∂x p = 0, (1)

where ∂α represents an operator ∂/∂α , and p, vx, c, and Z are the sound pressure, the particle velocity in
the x-direction, the speed of sound, and the characteristic impedance of a medium, respectively. Addition and
subtraction of the two equations in Eq. (1) derive the following advection equations:

∂t fx±± c∂x fx± = 0, for fx± = p±Zvx. (2)

fx+ and fx− represent forward and backward components of the sound field in the x-direction and Eq. (2)
expresses propagation of them with the velocity of c.

In the MOC, the advection equations expressing wave propagation are computed by advection calculations
schematically illustrated in Fig. 1. As shown in the diagram, advecting fx± at points ∓c∆t distant from a grid
point xi at a time step n gives those at xi at the next time step:

f n+1
x± (xi) = f n

x±(xi ∓ c∆t), (3)

where ∆t is the time step size, and the superscripts n and n+1 denote time steps. When the points xi ∓ c∆t,
called advection sources, are not at grid points, f n

x±(xi ∓ c∆t) are obtained by using interpolations.

Figure 1 – Advection of values in the method of characteristics.

In the CIP method, a kind of the MOC, values at advection sources are interpolated with high accuracy
by using the Hermite interpolation(1), normally the 3rd-order Hermite interpolation. These calculations need
spatial derivatives of fx± at each grid. Advection equations for the derivatives are derived from the differen-
tiation of Eq. (2):

∂tgx±± c∂xgx± = 0, for gx± = ∂x p±Z∂xvx = ∂x fx± (4)

The CIP method simultaneously computes Eq. (2) and (4) using the 3rd-order Hermite interpolation.
The above formulation expresses one-dimensional wave propagation in the x-direction. Multi-dimensional

wave propagation is computed by the directionally separated advection formulation, where one-dimensional
advections for each axis are alternately computed. This technique requires additional advection calcula-
tions for spatial derivatives with respect to the direction perpendicular to the advection direction. For the
x-directional advection in a three-dimensional field, ∂y fx±, ∂ygx±, ∂z fx±, ∂zgx±, ∂y∂z fx±, and ∂y∂zgx± are
taken into calculation. Advection equations for these perpendicular derivatives are derived from the differ-
entiation of Eq. (2) and Eq. (4) and computed simultaneosly. The type-C CIP method is employed in this
report, where the perpendicular derivatives at the advection sources are also calculated by using the 3rd-order
Hermite interpolation(2, 3). We can calculate the y-directional and the z-directional advections in a similar
procedure to that for the x-direction described above. Results of sequential advections in the x-, the y-, and
the z-direction are asigned to the vales at the next time step.

2.2 Variable-grid technique
The variable-grid technique proposed here is based on the sub-grid technique. In the sub-grid technique,

a calculated field is divided into multiple-sized grids, where the coarse grid sizes is ∆l (= ∆x = ∆y = ∆z),
and the fine grid sizes in a subgridded area is ∆ls (∆ls = ∆l/N, N = 2,3, . . .). To suppress errors due to the
numerical diffusion the CIP method involves, we apply the sub-grid technique to areas where the physical
values widely fluctuate. These area will shift according to wave propagation. Therefore, subgridded areas are
dynamically set through the following procedure.

• Before starting calculations, divide the sound field into blocks including a number of coarse grids,
normally cubic blocks of the same size.
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• One of the physical values and their derivatives is specified as an evaluation value. During calculations,
if an absolute value of the evaluation value at any point in a coarse-grid block exceeds a given threshold,
divide the block into the finer grids, i.e. convert the block to a subgridded block. As shown in Fig. 2,
derive the physical values and their derivatives at newly defined points (open circles) from those at
existing points (gray circles) by using the 3rd-order Hermite interpolation.

• Meanwhile, if absolute values of the evaluation values at all points in a subgridded block fall below the
given threshold, reintegrate the finer grids into the original coarse grids. Extract the physical values and
their derivatives at coarse-grid points, and discard the others.

In the coarse-grid and subgridded areas, advection calculations are similarly carried out using the grid
sizes of each area. However, calculations at an interface between these areas need an additional treatment (6).
Figure 3 schematically illustrates the procedure for advection calculations in the +x-direction at the edge of
the subgridded area, for example. The first step is to interpolate fx+, gx+, and thier perpendicular derivatives
at the point indicated by the open square in Fig. 3 from the values at the coarse-grid points using the 3rd-
order Hetmite interpolation. Using the values at the coarse-grid points and interpolated values at the open
square point enables the advection calculations for all the points at the edge of the subgridded area. That is,
to interpolate the values at the points c∆t distant from the edge of the subgridded area, and to advect them.
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Figure 2 – Interpolation of values at sub-grid points from coarse-grid points.
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Figure 3 – Advection calculation at an interface between coarse-grid and subgridded areas.

2.3 Boundary condition
In the CIP method, boundary conditions at the interface between two media are given using the reflection

coefficient. When fx+ and gx+ are incident on the boundary at xb, for example, the boundary conditions are
represented as

fx−(xb) = Γ fx+(xb), (5)
gx−(xb) = Γ′gx+(xb). (6)
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Γ denotes the reflection coefficient of p and vx and Γ′ denotes that of the spatial derivatives ∂x p and ∂xvx,
respectively. The Dirichlet and Neumann conditions on the boundary give the following relation:

Γ′ =−Γ. (7)

We can explicitly give the reflection coefficients Γ and Γ′ as constants as long as they satisfy Eq. (7). For
example, Γ = 1 and Γ′ =−1 are set to a perfectly reflective surface.

In multi-dimensional simulations, boundary conditions for the perpendicular derivatives are given in sim-
ilar forms to Eqs. (5) and (6) as a result of spatial differentiations of these equations.

3. NUMERICAL RESULTS AND DISCUSSIONS
We show numerical results of sound propagation in a three-dimensional outdoor field calulated by pro-

posed method, and compare accuracy and efficiency of the varible-grid system with those of the conventional
uniform-grid system. Figure 4 shows caluclated sound field. We assume a site of a factory including a part of
a building and a residential zone beyond an embankment. Calculation parameters are as follows: the coarse-
grid sizes are ∆l = 0.3 m; the sub-grid sizes are ∆ls = 0.1 m, i.e. N = 3; the time step size is ∆t = 1.0×10−4 s;
the speed of sound is c = 343.4 m/s. The field is divided into 25× 25× 10 blocks and each block includes
8× 8× 8 coarse grids. The threshold for converting a coarse-gird block to a subgridded block is the sound
pressure of 0.5×10−3. All boundaries assumed to be perfectly reflective, i.e. Γ = 1 and Γ′ =−1. Addition-
ally, the PML(7, 8) with 16 layers surrounds calculated field except the outer boundary in the −z-direction.
The attenuation parameter of the PML is R = 1.4ρc. In the PML region, the grid size is fixed at the coarse-
grid size for simplicity of a calculation. A point source is set at (xc,yc,zc) = (6,30,0) as shown in Fig. 4. The
initial sound pressure distribution is given as the Gaussian with the unit amplitude:

p(x,y) = exp
{
−(x− xc)

2 +(y− yc)
2 +(z− zc)

2

2 ·0.42

}
. (8)

The initial distributions of spatial derivatives of p are also given as the differentiations of Eqn. 8.
For comparisons, the same sound field is calculated by uniform-grid systems with ∆l = 0.3 m and ∆l =

0.1 m (hereafter, the coarse- and the fine-grid systems, respectively). The grid size of the latter is equal to the
sub-grid size of the variable-grid system.
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Figure 4 – Calculated sound field.

Figure 5 shows sound pressure distributions in a xz-virtical plane including the source point and horizontal
planes 0.3 m above the ground level at t = 200∆t,600∆t,1 000∆t, and 1 400∆t. Green squares in Fig. 5 repre-
sent subgridded blocks with finer grids. It is confirmed that the variable-grid technique can dynamically set
subgridded areas accorgind to wave propagation. The subgridded areas follow main wave fronts of reflected
and diffracted waves as well as the direct wave. Meanwhile, areas where the amplitude of wave fronts is
smaller than the threshold remain coarse-grid areas.

Figure 6 compares sound pressure trasients calculated by the variable-grid, the fine-grid, and the coarse-
grid systems at the point R1: (48, 30, 4.2) shown in Fig. 4. In the result of the coarse-grid system, suppression
of amplitude caused by the numerical diffusion is observed. In contrast, the result of the varible-grid system
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Figure 5 – Sound pressure distributions at t = 200∆t,600∆t,1 000∆t, and 1 400∆t (∆t = 1.0× 10−3). Green
squares represent subgridded blocks with finer grids.
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Figure 6 – Sound pressure transients at the point R1: (48, 30, 4.2) calculated by the variable-grid, the fine-grid,
and the coarse-grid systems.
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well agrees with that of the fine-grid system. This means that the variable-grid technique can reduce the
errors due to the numerical diffusion. After t = 1 500∆t, the results of the varible-grid system slightly differs
from that of the fine-grid system. Waves with amplitude smaller than the threshold are not followed by the
subgridded area as described above. Therefore, these small waves are suppressed a little by the numerical
diffusion.

Figure 7 shows the number of grids in the calculation with the varible-grid system at each time step
as ratios relative to that the fien-grid system requires. At the beginning of the calculation, the number of
grids increases with increase of the number of subgridded blocks according to the spread of the wave fronts.
After the wave fronts reache at the end of the calculated field, the number of grids decreases gradually. The
maximum number of grids is 26% of the fine-grid system. Table 1 compares computational costs of the
variable-grid system and the uniform-grid systems. It is found that the variable-grid system requires about
one-fourth of computer memory and one-fifth of computational time relative to those the fine-grid system
requires.
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Figure 7 – Number of grids in the varible-grid system calculation at each time step as ratios relative to that
the fien-grid system requires.

Table 1 – Computational costs of the varible-grid, the fine-grid, and the coarse-grid systems. Percentages in
parentheses are ratio relative to the fine-grid system.

Grid system Maximum number of grids Calculation time [s]

Fine 82.24 ×106 (100%) 48.23 ×103 (100%)
Coarse 4.81 ×106 (5.9%) 4.47 ×103 (9.3%)

Variable 21.18 ×106 (25.8%) 9.49 ×103 (19.7%)

4. CONCLUSIONS
In this report, the CIP method with the variable-grid technique is applied to numerical simulation of three-

dimensional outdoor sound field. This technique provides the procedure for dynamic setting of subgridded
areas according to wave propagation. The examination assuming a practical outdoor field revealed the fol-
lowings:

• The variable-grid technique achieves almost the same accuracy with the finer uniform-gird system
reducing the errors due to the numerical diffusion.

• The variable-grid technique reduces computational costs. The simulation using this technique requires
about one-fourth of computer memory and one-fifth of computational time relative to those required in
the simulation using the finer uniform-grid.
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