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ABSTRACT
Hybrid computational aero-acoustic (CAA) solution schemes rely on the knowledge of a scattering
function known as a Green’s function to propagate source fluctuations to the far-field. Presently, these
schemes are restricted to relatively simple geometries. We present here a computational method for
evaluating Green’s functions within more geometrically complex regions, as a means of extending the
versatility of existing hybrid schemes. The direct collocation implementation of the Boundary Element
Method used in truncated, semi-infinite domains, introduces additional unknowns on the boundary. In
this paper we develop a modified boundary element formulation to efficiently incorporate approximate
Non-Reflecting Boundary Conditions for an arbitrary number of truncation boundaries. The boundary
condition is based on the Dirichlet-to-Neumann mapping operator. Results are compared to known
analytical Green’s functions for an infinite pipe as a means of validating the new code. The method
achieves relative errors of less than 1% compared with the analytical solution for the highest mesh
density tested. Execution time, known to be large for acoustic problems, is minimised through the
use of multi-threading.

Keywords: BEM, DtN Operator, Green’s Functions
I-INCE Classification of Subjects Number(s): 23.6

1. INTRODUCTION
The prediction of noise generated by an aero-acoustic source has been the subject of research

since the 1950s and may be broadly seen to consist of two fundamental tasks: the computation of
source characteristics; and the propagation of the calculated acoustic fluctuations to an observer.
Hybrid noise prediction schemes combine the strengths of both numerical and analytical schemes in
a multi-domain set-up [1]. A useful summary may be found in the review by Singer et al. [2]. Use of
these schemes as an alternative to solely numerical procedures precludes the need to mesh and solve
equations in the region between the source and the observer meaning the demand on computational
resources is significantly less. However, hybrid schemes generally rely on the evaluation of an integral
equation for the propagation step whose kernel consists of a Green’s function. This Green’s function
must satisfy the boundary conditions in the propagation domain. Analytical representations of exact
Green’s functions are few and far between, despite there being a number of published approximations
[3]. Hence we are limited to propagating sound using integral equations in regions where Green’s
functions are available. In order to extend the versatility of existing hybrid CAA schemes, we develop
here a suitable means to accurately and robustly compute acoustic Green’s functions in geometries
where analytical representations are unavailable. Resulting hybrids schemes may therefore propagate
the sound directly in a single step, using a numerical representation of the Green’s function, without
the need for an intermediate domain or additional calculation to find the scattered component of the
acoustic field.
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This paper examines the use of the Boundary Element Method (BEM) for this purpose. Specifically,
we focus on a particularly useful class of 2D problems – acoustic scattering in a channel with or
without geometrical obstructions. Such problems are typically dominated by 2D effects and their role
in sound attenuation has been observed for some time. Although the treatment in this paper is limited
to 2D problems, the principles are easily extended to three dimensions. The typical version of the
direct BEM formulation used in this paper, requires a closed boundary on which either the solution
variable or its normal derivative is known on every segment of the boundary. For the semi-infinite
class of domains we presently examine, such information is not readily available resulting in an
under-determined set of equations. We truncate the channel in both the upstream and downstream
directions, then specify a non-reflecting boundary condition (NRBC) on these boundaries which
simultaneously closes the BEM system mathematically. This boundary condition is a non-local
boundary condition, which demonstrate greater accuracy than local approximations [4]. However,
non-local boundary conditions are generally more computationally expensive due to the coupling of
every node on the boundary surface. Furthermore, the computation of a large number of integrals is
usually required. We show in this paper that the inclusion of a non-local boundary condition in the
constant element direct BEM avoids the additional numerical integration entirely, and thus allows an
accurate truncation of the BEM domain at little cost.

2. GREEN’S FUNCTION FOR THE HELMHOLTZ EQUATION
Time-harmonic acoustic problems, in the absence of a mean flow, may be represented by a

Helmholtz BVP of the form

(∇2 +k2)φ̂(x,ω) =−q̂(x,ω) in Ω (1a)
φ̂(x,ω) = g(ω) on Γ1 (1b)

∂φ̂

∂n
(x,ω) = h(ω) on Γ2 (1c)

In the most general case we assume the source term to be a function of spatially compact support.
One method of developing an analytical solution to this BVP is to transform the differential equation
into an integral equation in which we can substitute the boundary conditions. These boundary
conditions are incorporated in the Green’s function Ĝ(x,y,ω), where y refers to the compact source
coordinate. This is the solution to the singular form of the original differential equation (Equation (2))
and satisfies the original boundary conditions. Physically, it may be interpreted as an outgoing wave
produced by an impulsive unit point source at y.

(∇2 +k2)Ĝ(x,y,ω) = δ(x−y) (2)

In the absence of boundary conditions we may consider this wave to propagate in free-space and
hence we often use the free-space Green’s function, readily available analytical form. However, the
introduction of boundaries and hence associated boundary conditions complicate matters as an
analytical representation of Ĝ is difficult to construct. In the remainder of this paper we show
that the BEM can be a robust and accurate means of numerically computing Green’s functions
within arbitrary geometries. We now develop a BEM formulation suitable for solving a class of
two-dimensional BVPs.

3. DIRECT COLLOCATION BOUNDARY ELEMENT FORMULATION
When analysing problems on infinite domains, the Boundary Element Method (BEM) offers a

number of advantages over the Finite Element Method (FEM) (see for example [5, 6]). A number
of different BEM formulations exist depending on the type of boundary reduction procedure used.
The direct formulation is arguably the simplest to derive and implement with many introductory
texts on the subject of BEM focussing on this formulation in particular. For this reason, we use this
implementation here.
The direct boundary integral equation (BIE) representation of the general BVP (Equation (3)) where,
for convenience, we have dropped the hat notation, is given below. The derivative of the solution
φ with respect to the outward normal is represented by the symbol ψ. This considers a problem
where the boundary is closed and comprises three different types of boundary characterised by the
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information known on the particular boundary segment: Γ1-type (type 1) boundaries contain known
values of φ, Γ2-type (type 2) boundaries contain known values of ψ. We also consider an extension to
this problem where we also have Γ3-type (type 3) boundaries which are truncation boundaries and
hence contain no known information (Figure 1).

Figure 1 – General 2D BVP geometry with the boundary segmented into those of type 1, type 2 and
type 3.

The traditional formulation of the BEM, based on Equation (3), is soluble while some information
about the solution is known at each node on the boundary.
Considering for the moment the case where all segments of the boundary may be classified as
either type 1 or type 2, application of the weighted residual method produces the usual BIE
Equation (3) where φ∗ and ψ∗ represent the free-space Green’s function and its normal derivative for
the homogeneous BVP in free-space. The overbar signifies a known quantity.

cφ+
∫

Γ2
φψ∗dΓ +

∫
Γ1
φ̄ψ∗dΓ =

∫
Γ2
ψ̄φ∗dΓ +

∫
Γ1
ψφ∗dΓ (3)

This statement is discretised into constant elements giving for the i-th fundamental solution position

ciφi+
N∑
j=1

(∫
Γj

ψ∗jdΓ
)
φj =

N∑
j=1

(∫
Γj

φ∗jdΓ
)
ψj (4)

which we represent in matrix form as

H~φ= G~ψ (5)

This formulation is soluble since type 1 and type 2 boundaries specify either φ or ψ at each node of
the boundary, resulting in only a single unknown per element.
If we now introduce a segment of type 3 boundary as part of the problem consisting of K elements,
the system becomes under-determined. One means of addressing this to eliminate one set of unknowns
through the introduction of additional equations which relate the two unknowns for each element on
the type 3 boundary. In this case we end up with a system whose i-th component is

ciφi+
N∑
j=1

(∫
Γj

ψ∗jdΓ
)
φj =

N−K∑
j=1

(∫
Γj

φ∗jdΓ
)
ψj +

K∑
j=1

(∫
Γj

φ∗jdΓ
)
ψj (6)

Now for all values of j ∈K we have two unknowns. What we require therefore, is to eliminate the
unknown values ψj by using an equation which maps values of ψj 7→ φj for j ∈ K. We call this
mapping a DtN map or DtN operator.

4. DIRICHLET-TO-NEUMANN OPERATOR
In order to fully determine the system of equations in the previous BEM formulation Equation (6),

we require an additional set of equations which relate φ to ψ on the artificial boundary. Global
NRBCs based on the Dirichlet-to-Neumann operator [4] meet the requirements; using the DtN
operator, the solution φ may be mapped to its normal derivative ψ. If applied at every node on
the artificial boundary, enough additional equations are generated to close Equation (6). The DtN

Inter-noise 2014 Page 3 of 10



Page 4 of 10 Inter-noise 2014

operator is constructed by considering the solution to the homogeneous BVP in the region beyond the
truncation boundary, be that upstream or downstream. Knowledge of an analytical general solution
in this region, evaluated on the truncation boundary is therefore equivalent to the solution of the
interior problem on the same boundary as away from the source point (or source region if source is
distributed) the two BVPs should be equivalent. Since the construction of the DtN operator requires
knowledge of a specific solution homogeneous solution characterized by the type of geometry beyond
the truncation boundary, it is necessary to restrict ourselves in this paper to a subset of the general
class of problem in which the domains beyond the truncation boundaries are those of rectangular
channels or ducts (Figure 2) [7].

Figure 2 – An arbitrary 2D waveguide which is assumed to be a parallel-sided 2D waveguide beyond
truncation boundaries denoted Γ3

The problem domain, in which the BVP defined by Equation (1) applies, is defined by Ω and the
infinite analytical domain in which the homogeneous version applies in D. Since we are dealing with a
waveguide, it is appropriate to express the vector position x in terms of its scalar components [x1,x2].
We drop the frequency dependence for convenience from the propagating wave number γn ≡ γn(ω) in
the following derivation. The solution to the problem in D subject to rigid-wall boundary conditions
on the upper and lower walls is therefore given by the function φ̄(x1,x2) which, using separation
of variables, may be represented by an eigenfunction expansion (Fourier series representation) in
the cross-duct direction multiplied by a single outgoing wave function centred on the truncation
boundary at x̄1 as:

φ̄(x1,x2) = φ1(x1)φ2(x2)

=
[
a0 +

∞∑
n=1

an cos
(nπx2

L

)]
e±iγn|x1−x̃1| (7a)

Where the coefficients are the usual Euler formulae for the cross-duct Fourier series

a0 = 1
L

L∫
0

φ2(x2)dx2 (7b)

an = 2
L

L∫
0

φ2(x2)cos
(nπx2

L

)
dx2 (7c)

We can differentiate this with respect to the outward normal to the truncation boundary to get an
expression for ψ as:

∂φ

∂x1
(x1,x2)≡ ψ(x1,x2)

=±iγ0a0e
iγ0|x1−x̃1|± i

∞∑
n=1

γnan cos
(nπx2

L

)
e±iγn|x1−x̃1| (8)
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This relationship may then be used as the definition of DtN operator M defined as

ψ(x1,x2) =M [φ(x1,x2)]

Our analysis is equivalent to the 2D rigid wall expressions of Harari et al. [7].

5. BEM IMPLEMENTATION
The DtN boundary condition (Equation (8)) is exact. However, we should note that practical

implementation requires us to truncate the infinite series and hence this exactness is lost. Furthermore,
the waves absent from the series essentially have a boundary condition ∂/∂n= 0 which generates
reflections on the boundary for these modes but also can cause mathematical issues of non-uniqueness
[8]. One solution is to ensure the number of terms in the DtN condition is large enough to include
all modes required for the solution to the problem to be unique. However, particularly for higher-
dimensional problems and problems involving high frequency propagation, the series representation
may contain a large number of terms, many of which are included to ensure uniqueness rather than
to improve the accuracy by any appreciable amount [9]. The modified DtN formulation of Grote and
Keller [8] which imposes the radiation condition on these missing modes instead, is a more practical
and alternative.
Wave-guide problems afford a certain degree of simplification of the issue of uniqueness and reflection
caused by truncation of the DtN series. In a wave-guide, the propagating modes are restricted based
on the relationship between frequency and duct geometry. Since the boundary condition ∂/∂n= 0 is
exact for the cut-off modes, Harari et al. [7] have shown that we only require at least the propagating
modes in the boundary condition expansion in order for a unique solution to be guaranteed. Our
truncation boundaries are placed far enough from the source to ensure all evanescent modes have
suitably decayed by the truncation boundary. Therefore, the standard DtN containing a relatively
few number of terms is sufficient for both uniqueness and accuracy.
To incorporate the DtN relationship into the boundary element formulation we introduce the discrete
representation of the solution on the truncation boundary into Equation (8). We label the values of
φj over the outlet j ∈K φk. The manipulation of the coefficient integrals then uses the fact that
since we have used constant (discontinuous) boundary elements, the values of φk are constant over
each element on the truncation boundary. The values of φk may be brought outside the integrals
with the remaining integral simple to compute analytically.

a0 = 1
L

∑
k

φk
e±iγn|x1−x̃1|

lk

where lk is the length of the k-th element. Similarly the other integral becomes:

an = 2
L

∑
k

φk
e±iγn|x1−x̃1|

L

nπ
∆nk

where ∆nk =
[
sin
(
nπbk
L

)
− sin

(nπak
L

)]
in which [ak, bk] are the coordinates of the endpoints of the

k-th element in the x2-direction. We may now substitute for the φk values on the truncation boundary
and rearrange the system which results in a reduction in the elements of G~ψ and a correction of the
elements of H. The modifications are summarised as

hij 7→ hij−
∑
k

gikδjk (9a)

δjk = αj +
∑
n

βnjΨnk (9b)

αj = iklj
L

(9c)

βnj = 2iγn
π

∆nj

n
(9d)

Ψnk = cos
(
nπ (x2)k

L

)
(9e)

∆nj =
[
sin
(
nπbj
L

)
− sin

(nπaj
L

)]
(9f)

This fully determines the system which can now be solved for all the missing values on the type 1
and type 2 boundaries and the φ values on the type 3 boundary. The corresponding values of ψ on
the type 3 boundary may then be found from the discretised equation
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ψi =± ik
L

∑
k

φklk±
2i
π

∑
k

[(∑
k

φkδnk
n

)
γn cos

(nπγi
L

)]
(10)

In the context of the discussion in the introduction we note that this boundary condition is non-local
in the sense that it couples all the unknowns on the truncation boundary. Due to the already full
nature of the BEM matrix as well as the lack of numerical integration for constant boundary elements,
this non-locality not the disadvantage it is made out to be in many publications concerned with
the application of DtN to FEM. The implementation procedure is easily repeated for an arbitrary
number of separate truncation boundaries.

6. RESULTS
Having established an extended BEM to approximate solutions to BVPs in semi-infinite domains,

we now determine how the number of terms in the DtN map affects the accuracy and execution time
and whether they are affected by any notable interactions between the choice of number of terms,
mesh density and frequency. The mesh density may assist in filtering out unsupported reflected modes
from the boundary condition but also may fail to allow unsupported transmitted modes through the
boundary, which would contaminate the solution. We compute here the Green’s function for a rigid
wave guide using the BEM formulation stated above. We present and analyse the effects of changing
the mesh density, DtN expansion terms and frequency on the accuracy and execution time.
6.1 2D Green’s Function for a Rigid Channel

We consider the Green’s function for an acoustically rigid channel of width d. The geometry
beyond the problem domain is assumed to continue to be that of an acoustically rigid, straight-walled
channel. The analytical solution to this problem for a source position (ξ,η), observer position (x,y)
and origin located on the lower surface of the channel is given by [10]

G(X,y,η) =−1
2

∞∑
m=0

εm
e−γ2m|X|/d

γ2m
cosmπy

d
cosmπη

d

where

γm =−i
(
k2d2−m

2π2

4

)0.5
εm =

1 if m= 0
2 otherwise

and X = x− ξ

This solution is evaluated using 5000 terms of the infinite series which gives an accuracy to at least 5
significant figures [10]. Errors will therefore be of the same order of magnitude as the threshold of
hearing (2×10−5). We choose to fix the location of the boundaries arbitrarily at x=±3d.
6.1.1 Range Selections

For our numerical experiments we select the audible frequency range from f = 20 to 20,000 Hz.
We initially stipulate a required absolute accuracy corresponding the threshold of hearing (of the
order 10−5). In reality, for noise calculations, this need not be so stringent as audible error noise
even an order of magnitude greater would likely be quiet enough to not attract attention. However,
there are many situations where even relatively low amplitude acoustics can excite instabilities in
fluid flow which generate feedback loops or other forms of radiation [11]. If our numerical Green’s
functions were used in such cases, the low amplitude numerical error may impact significantly. In
order to determine a range of mesh density selections n which will resolve the waves at frequency f
and achieve the desired accuracy, we compare the exact integral of a single cycle of wavelength λf to
the same integral computed using constant BEM of mesh density n. The number of elements required
to achieve errors of 10−5 is impractical (n= 400/λf ), requiring memory of the order 102GB which is
not widely available. A more modest target of 8 elements per wavelength is selected, which achieves
an absolute error in the amplitude of the order 10−2, a relative error of less than 10%. Therefore,
mesh density varies from n= 10 to n= 500 to ensure a mixture of good and poor resolution across
the range of source frequencies. This upper limit has the added benefit of being able to resolve all
the propagating waves at the highest frequency f .
The choice of DtN terms in the expansion on the truncation boundary should allow us to investigate
results for both resolved and unresolved DtN waves. We choose to vary the number of DtN terms in
the expansion from M = 10 to 250, where the upper limit is beyond the resolution capabilities of the
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mesh. As discussed earlier, the exclusion of propagating modes in the DtN series at the artificial
boundary results in essentially setting a boundary condition equal to zero for those modes. Unwanted
reflections are thus inevitable if either the DtN expansion does not support the appropriate number
of propagating modes or the boundary is close enough to the source that the cut-off higher-order
modes have not sufficiently decayed. This latter situation is only expected at lower frequencies for
our chosen boundary position. The justification of this expectation is omitted here due to space
restrictions.
In all cases tested, after computing the boundary values, the code proceeds to evaluate the solution
over a line of 120 points. All error values are mean values over this grid. This is considered a fairer
representation of the accuracy of the calculation than considering the maximum error as errors near
the singularity and near boundaries are expected to be larger than elsewhere in the domain. Since
these regions occupy only a small percentage of the overall region of interest their error values in
isolation are not a suitable measure.
6.1.2 Accuracy variation with Frequency

We start by examining the variation in RMS relative error with frequency for different combinations
of M and n. Errors can arise from several sources: the poor resolution of the source waves at all
boundaries; the lack of terms in the DtN boundary condition; poor resolution of the DtN waves at
the artificial boundary; or the poor performance of internal point valuation by the BEM when the
point is near the singularities in the fundamental solution at the boundary. Figures 3a and 3b show
the variation in error over the range of f and M for two values of n. As can be easily observed, a
sudden jump in error is evident as an increase in frequency cuts-on higher-order modes not capable
of being represented by the boundary conditions of lower M . This behaviour is consistent with the
results of Harari et al. [7] who state that accuracy of the DtN condition is ensured by including all
the propagating modes in the expansion. This source of error is the most significant.
For the higher values of n, the error ramps up with source frequency f rather than jumps. This
suggests that the exclusion of propagating modes is more detrimental at the lower resolutions. If
the frequency is increased further, there comes a point beyond which further exclusion of modes has
no dramatic effect, with a relatively uniform increase in error attributed to the increasingly poor
resolution of higher frequency waves. Likewise, the inclusion of increasing numbers of evanescent
modes also has little effect on the accuracy, even at low frequencies. This is due to the rapid decay of
such modes and the placement of our downstream boundary such that the magnitude of these waves
are negligible.
In contrast, the inclusion of propagating modes into the DtN expansion at the lowest mesh resolution
has little effect on the error variation with frequency. For all but the first frequency the poor resolution
is the principal source of error with inclusion of propagating modes having little benefit if they are
poorly resolved. Therefore, we can conclude that if resolution is adequate, the principal source of
error with frequency relates to the inclusion of propagating modes in the DtN expansion, with poor
resolution of the waves in the field responsible for a more general increase in error with frequency.
6.1.3 Accuracy variation with Mesh Density

In general, the error decreases with mesh density. This behaviour is strongly influenced by
the inclusion of enough terms in the DtN expansion such that M is large enough to allow all
propagating cross-channel modes to be represented. However, there are some instances, where for a
given combination of f and M a ‘spike’ is observed in the error at n= 90. Such behaviour is visible
in Figure 4b but not at the lower frequency.
One possible reason for this could be the known phenomenon that the inclusion of an increased
number of evanescent modes in the solution forces systems to be near-singular [12]. Such behaviour
would easily be amplified through matrix inversion as part of the solution of the linear system. As
can be seen from Figure 4b, these error ‘spikes’ may be easily avoided by selecting either a higher (or
lower) value for M .
6.1.4 Execution Time

Figure 5 indicates the variation in execution time with mesh density for the highest and lowest
frequencies tested. The execution time on MATLAB R2013a decreases with frequency due to the
multi-threading of Bessel function evaluation for large arguments. There is negligible variation in
the execution time over the range of values of M selected. the value of M has little effect on the
execution time. We can assert that this is only true for relatively small values of M (suitable for
our application). For larger values, it was found that the extra time needed to compute the DtN
boundary condition influences execution time at least as much as the mesh density. The reduction in
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(a) Mesh Density n = 10

(b) Mesh Density n = 500

Figure 3 – Variation in RMS relative error with frequency f and terms in the DtN boundary expansion
M for selected mesh densities n.

execution time with frequency is also observable. The rapid increase in execution time with mesh
density means that between the last two mesh densities considered, execution time increases by half
as much again for a gain in accuracy of just 0.5% at the highest frequency. At the lower frequencies
the increase in accuracy is much less as the solution has almost converged to a relative RMS error of
the order 10−4%.
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(a) Frequency f = 20 Hz

(b) Frequency f = 20 kHz

Figure 4 – Variation in RMS relative error with mesh density n and terms in the DtN boundary
expansion M for selected frequencies f .

Figure 5 – Variation in execution time with mesh density for f = 20 Hz and f = 20 kHz for range of
M
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7. SUMMARY
We have shown that the BEM is a suitable means of accurately computing an acoustic Green’s

function for a class of 2D geometries. This calculation is accomplished through the solution of the
singular form of the governing BVP including the boundary conditions associated with the original
problem. Where artificial (transparent or non-reflecting) boundary conditions are required to close
the originally semi-infinite domain, we have circumvented the potential under-determination of the
system of boundary equations by utilising a Dirichlet-to-Neumann operator to provide the necessary
additional equations. The use of constant elements for the BEM greatly simplifies the implementation
by avoiding the need for additional numerical integration of the DtN expansion. Multi-threading
has also been used to increase efficiency at higher frequencies. The validation exercises compare the
numerical results with analytical solutions. Excellent agreement is achieved with relative errors of
less than 1%. The DtN boundary condition may be easily extended to other geometries by simply
changing the form of the series solution used to construct the DtN operator, with the implementation
largely unchanged.
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