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ABSTRACT
The paper deals with the Stochastic Noise Generation and Radiation (SNGR) model based on synthesizing
of turbulent velocity components from results of a Reynolds Averaged Navier-Stokes (RANS) simulation.
The turbulent velocity components are then used for computation of aero-acoustic sources representing the
right-hand side of linerized Euler equations (LEE) describing the sound propagation. Primarily, the paper is
aimed on testing the sensitivity of SNGR model solution on a source region size. Specifically, an acoustic
intensity was chosen as a comparative variable computed by solving LEE via meshfree Finite Point Method
(FPM). The size of source region has a direct impact on time and memory requirements during the stochastic
reconstruction. As a test case, we chose a 2D free plane jet with height 2b0 = 30mm and M = 0.1. For
obtaining the averaged flow results, the RANS simulation with standard k−ε turbulence model was performed.
Based on this averaged results, the turbulent velocity field is obtained by the synthesis of a finite sum of
random Fourier modes.
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1. INTRODUCTION
Aero-acoustics (AA) is interdisciplinary science that deals with flow-induced sound. This branch of

acoustics began about 60 years ago, mainly caused by the invention of jet planes and efforts to reduce their
noise levels. For many practical challenges to reduce noise in industrial applications, the ability to predict
and understand generation of noise is very important. The recent renewed interest in AA is due to increasing
computing resources.

Computational Aero-Acoustics (CAA) is a tool for numerical simulation of sound. The CAA can be
divided into two approaches. The first approach consists of direct methods where the full compressible
Navier-Stokes equations are solved using Large Eddy Simulation (LES) or Direct Numerical Simulation
(DNS). Unfortunetally, this first approach is still unusable for most practical applications due to the enormous
computational demands. The time inconveniences caused by direct methods are at least partially overcome
by the second approach, the hybrid methods. These methods are often referred to as two-step methods on
grounds of a division of problem on a sound generation part, and a sound propagation part. If we focus on the
generation of sound, the turbulent velocity field is necessary for acoustic source term computation. One way to
obtain these turbulent fluctuations may be performing the unsteady simulation, e.g. DNS, or LES. The second
way can be the stochastic reconstruction of turbulent velocity field from the low cost RANS simulation, e.g.
closed with a k−ε turbulence model, where k is the turbulent kinetic energy and ε is the turbulence dissipation
rate. This stochastic reconstruction is used in SNGR model where the turbulent velocity field is synthesized by
a finite sum of random Fourier modes. Now, if we focus on the propagation of sound, we use LEE with the
source term on the right hand side which is calculated using the turbulent velocity field.

The SNGR model is based on the approach devised by Kraichnan (1) and improved by Karweit et al. (2),
where the spatially correlated turbulent velocity field is defined as a finite sum of discrete Fourier modes. This
method was originally used for generating a turbulent velocity field from the turbulent quantities obtained
by RANS simulation, and subsequent computing of acoustic source terms as a right hand side of appropriate
propagation equations of sound waves. The first formulation of this model was applied to subsonic jet noise
calculation by Béchara et al. (3). In a further development, Bailly et al. (4) introduced a time dependent term
into the Fourier modes. A different way of introducing time dependency based on an asymmetric time filter
was presented by Billson et al. (5).

1niedoba@fme.vutbr.cz

Inter-noise 2014 Page 1 of 7

niedoba@fme.vutbr.cz


Page 2 of 7 Inter-noise 2014

2. STOCHASTIC NOISE GENERATION AND RADIATION MODEL
2.1 Stochastic turbulence modeling

The method for generating a homogeneous isotropic turbulence having the proper spatial characteristics
was proposed in (1). The turbulent velocity field is defined using the Fourier mode approach.

Consider a Fourier decomposition of a turbulent homogeneous isotropic field u′ = (u′1,u
′
2,u
′
3) at given

point x = (x,y,z)

u′(x) =
∫

û(κκκ)e jκκκ·xdκκκ (1)

where κκκ is a wave vector and j is the unit imaginary number ( j2 =−1). Assuming that u′ is a real function,
and using the even property of cosine function, we may approximate the equation 1 as a finite sum of N
discrete Fourier modes

u′(x) = 2
N

∑
n=1

ûn cos(κκκn ·x+ψ
n)σσσn (2)

where ûn, ψn, and σσσn are the amplitude, phase, and direction, respectively, of the nth Fourier mode associated
with the wave vector κκκn. Each wave vector κκκn is picked randomly on a sphere of radius specified by a
wave number κn = ||κκκn|| to ensure isotropy. Hence, the wave vector κn may be characterized by spherical
coordinates (κn,ϕn,θ n).

Now we define the choice of wave numbers κn. The highest wave number is dependent on a mesh resolution,
i.e. κmax = π/∆, where ∆ is equal to grid spacing, when we have an equidistant grid. In the case of non-
equidistant grid, we may decide to pick a mean value of grid spacing as a ∆. The smallest wave number
is defined by relation κmin = κe/p, where κe = A9π/(55Lt) is the wave number corresponding to the most
energy containing eddies (6), p is the parameter which should be larger then one to make the smallest wave
number smaller then κe. The numerical constant A will be introduced later, and Lt = (2k/3)3/2/ε is a turbulent
length scale. Now, we may divide the wave number range, from κmin to κmax, into N equally large segments of
size ∆κ . The center of nth segment then corresponds to the nth wave number κn.

We also assume an incompressibility of the turbulent field and hence, the relation

κκκ
n ·σσσn = 0, n = 1, . . . ,N (3)

is satisfied (3). Therefore in a spectral space, the unit vector σσσn is always perpendicular to the wave vector
κκκn, and its direction on the plane perpendicular to κκκn is determined by the polar angle αn. As a consequence
of isotropy, homogeneity, and incompressibility, the angles ϕn,θ n,αn and ψn are chosen randomly with
probability distributions given in table 1 (7).

Table 1 – Probability distributions of the random angles

p(ϕn) = 1/(2π) 0≤ ϕn ≤ 2π

p(θ n) = (1/2)sinθ n 0≤ θ n ≤ π

p(αn) = 1/(2π) 0≤ αn ≤ 2π

p(ψn) = 1/(2π) 0≤ ψn ≤ 2π

For a complete description of the turbulent velocity field u′(x), see equation 2, we have to determine the
amplitude ûn of nth Fourier mode. A relation between k and ûn should be established using the equation 2 as
in (3).

k =
N

∑
n=1

(ûn)2 (4)

For the homogeneous isotropic turbulence, the energy spectrum E(κ) satisfies the following equality (8)∫
∞

0
E(κ)dκ = k (5)
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Now its clear, from the relations 4 and 5, that our approximation given by equation 2 allow us to approximate
the integral of energy spectrum by the finite sum of squares of Fourier mode amplitudes. Hence, the amplitude
of nth Fourier mode is given by

ûn =
√

E(κn)∆κ (6)

The modified Von Kármán spectrum is employed to simulate the isotropic energy spectrum (3)

E(κ) = A
u′2rms

κe

(κ/κe)
4

[1+(κ/κe)2]17/6 exp[−2(κ/κη)
2] (7)

where κη = ε1/4ν−3/4 is the Kolmogorov wave number, u′rms =
√

2k/3 is a root mean square value of the
turbulent velocity field u′, and A is the earlier mentioned numerical constant set to fulfill the relation 5. Thus
(7),

A =
55

9
√

π

Γ(5/6)
Γ(1/3)

(8)

For completeness, we should note that the symbol ν denotes a kinematic viscosity.
Now, we define a time sequence {u′(x, t)}T

t=0 of the random turbulent velocity field u′(x) (see equation 2),
where T is a total time. This time sequence corresponds to the generation of fluctuations at each time step.
Until the individual members u′(x, t) of the sequence are independent of each other, the time correlation will
be zero, which is unphysical.

To introduce a time dependency, we adopt the approach proposed in (5), where the field at current time
step is computed as a weighted sum of the field at previous step, and the random field generated by relation 2.
Thus, the time correlated random turbulent velocity field v′ = (v′1,v

′
2,v
′
3) is obtained as follows

v′(x, t) = av′(x, t−∆t)+bu′(x, t) t = ∆t, . . . ,T

v′(x, t) = u′(x, t) t = 0,
(9)

where ∆t denotes a time step, a = exp(−∆t/Tt) is the weighting coefficient, by which the turbulent time scale
Tt = k/ε is prescribed (5), and the choice of the coefficient b =

√
1−a2 ensures a preservation of the root

mean square values of the random turbulent velocity fields (6), i.e. v′rms = u′rms.

2.2 Linearized Euler equations

Let us denote the vector function w(x, t) := (ρ(x, t),v1(x, t),v2(x, t), p(x, t))T with primitive (physical)
variables, i.e. the density, velocity components and pressure, respectively. Therefore, the compressible 2D
Euler equations in matrix form read as

∂w
∂ t

+A1(w)
∂w
∂x

+A2(w)
∂w
∂y

= 0, x = (x,y) ∈ R2, t > 0, (10)

where the Jacobian matrices of this hyperbolic system are given as follows

A1(w) =



v1 ρ 0 0

0 v1 0 1/ρ

0 0 v1 0

0 γ p 0 v1


, A2(w) =



v2 0 ρ 0

0 v2 0 0

0 0 v2 1/ρ

0 0 γ p v2


, (11)

where γ is the adiabatic index (γ = 1.4 for diatomic gases). The quantities included in w can be decomposed
into a reference state (or mean value) w0(x) and a time dependent acoustic fluctuating (or perturbation) part
w′(x, t), cf. (9, 10, 11) in the following way
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w =



ρ

v1

v2

p


=



ρ0

v1,0

v2,0

p0


︸ ︷︷ ︸

w0

+



ρ ′ac

v′1,ac

v′2,ac

p′ac


︸ ︷︷ ︸

w′

, x = (x,y) ∈ R2, t > 0. (12)

Assuming that the fluctuating variables w′ are negligible in comparison to the reference states w0, i.e.

|ρ ′ac| � |ρ0|, |v′1,ac| � ‖v0‖, |v′2,ac| � ‖v0‖, |p′ac| � |p0|, (13)

where v0 = (v1,0,v2,0)
T , the Jacobian matrices Ai(w) can be approximated as follows

Ai(w0 +w′)≈ Ai(w0), i = 1,2. (14)

Substituting w = w0 +w′ into equation 10 and arranging the equations with respect to the unknown
fluctuating variables w′, the 2D linearized Euler equations in matrix form read as

∂w′

∂ t
+A1(w0)

∂w′

∂x
+A2(w0)

∂w′

∂y
= S, (15)

where A1(w0), A2(w0) are linearized Jacobian matrices and S is the source term.

2.3 Aero-acoustic source terms
Aero-acoustic source terms represent an intermediate step of CAA hybrid methods. The calculation of

these source terms is based on known mean and turbulent velocity fields. In our case, the turbulent velocity
field is obtained by the stochastic reconstruction using turbulent results of RANS simulation, ie. turbulent
kinetic energy and turbulence dissipation rate. The acoustic analogy asociated with LEE has been developed
in order to solve the propagation of acoustic waves in non-uniform mean flow (4). Similarly as in (11), we
choose the acoustic source term in following form

S = ( 0, S1, S2, 0 )T , (16)

where

Si =−
∂ρ0 v′i v′j

∂x j
+

∂ρ0 v′i v′j
∂x j

, i = 1,2. (17)

3. RESULTS
3.1 Flow results

As a test case, we chose a 2D free plane jet with height 2b0 = 30mm and inlet velocity U0 = 34.7ms−1

corresponding to Mach number M = 0.1. Kinematic viscosity ν = 15.29 · 10−6 m2s−1 is set for air at the
temperature τ = 20◦C. From resulting Reynolds number Re = 68,084, we can assume that flow is fully
turbulent. We use the same domain configuration, boundary conditions, and mesh settings as Aloysius (12).
This case was experimentaly investigated by Forthmann (13) and well described also by Abramovich (14)
where the theoretical solution of axial velocity progress was derived.

We use these data for proper setting of turbulent kinetic energy k at the inlet, because there is not any inlet
turbulence information in the Forthmann’s experiment. Hence, we performed a precursor pipe flow simulation
to obtain at least estimation of turbulent kinetic energy and turbulence dissipation rate inlet profiles. Figure 1
shows good agreement of axial velocity v1,0 with the experimental and theoretical data. Constant a = 0.11, see
Figure 1, provides the best fit to Forthmann’s experiment (12). For the purpose of generation of stochastic
turbulent velocity field, see equation 2, we perform RANS simulation with k− ε closure providing required
inputs, ie. turbulent kinetic energy k and turbulence dissipation rate ε . Figure 2 illustrates the mean axial
velocity component of our case.

For the purpose of stochastic reconstruction (see section 2.1), we set the number of Fourier modes N = 100
and parametr p = 5 (7). Once the turbulent velocity field is generated (see equation 2), the acoustic source
term may be computed according to equation 17. Note that this source term represent the right-hand side of
the 2D linearized Euler equations (see equation 15).
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Figure 1 – Axial velocity decay along the axis of the jet Figure 2 – Mean axial velocity (ms−1)

3.2 Acoustic results
Solution of LEE (see equation 15) representing the sound propagation is based on meshfree Finite Point

Method (FPM) described by Bajko (15). The computation was carried out on an acoustic mesh that consists
of 11,684 mesh points with local refinement near the jet exit (see Figure 3). The sides adjacent to the jet exit
are set up as walls. The other boundaries represent a free space, where a sponge layer is estabilished. The
sponge layer is used for absorption of sound waves and thus it prevents them from the returning back to the
domain. The time step ∆ t = 10−6 s. The computation covers a time interval T = 10−2 s, which corresponds to
10,000 time steps. The acoustic pressure is computed at locations on the part of circle with diameter R = 39b0
centered at the jet exit and emission angles θ ∈ {5◦,10◦, . . . ,85◦} (see Figure 4).
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Figure 3 – Acoustic mesh with sponge layer
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The evaluation of acoustic intensity is performed over the last 5,000 time steps of computation. The first
5,000 time steps represent the transition to steady-state regime and hence they are not considered.

For comparative purposes, we define the acoustic intensity, ie.

LI = 10log
(

I
Ire f

)
, (18)

where Ire f = 10−12 Wm−2 and

I = p′ac ·
√

v′1,ac
2 + v′2,ac

2 . (19)

Furthermore, we introduce the size of source region which is limited to points where the turbulent kinetic
energy, cf. Mesbah et al. (16)

k > Ackmax , (20)
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where kmax is the maximum value of k, and cut coefficient Ac ∈< 0,1 > determines the size of source region
by neglecting the points with turbulent kinetic energy less than Ackmax and at these points, we set the source
term (see equation 17) equal to zero, ie.

S = 0
∣∣
k≤Ackmax

. (21)

Note, for example, Ac = 0.1 (or 10%) means that the points with kinetic energy less than 0.1kmax are not taken
into account, ie. these points do not contribute to the source region. The figure 5 shows the dependencies
of acoustic intensity LI on emission angle θ for different values of cut coefficient Ac. We may see that the
acoustic intensity decreases with the increasing emission angle. If we assume that the solution for Ac = 0 is
the correct solution, we can notice that the accuracy decreases with an increase of cut coefficient Ac. In the
figure 6, the acoustic pressure p′ac is shown at time t = 0.01s.
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Figure 7 shows the accuracy deviation δ defined in the following way

δ (Ac) = ∑
θ

|LI(θ)−LAc
I (θ)|

LI(θ)
, (22)

where LAc
I is the acoustic intensity for specific value of cut coefficient Ac. Note that LI = L0

I . From this figure,
we are able to determine which values of cut coefficient Ac are still acceptable. The values of Ac ≤ 20% seem
to be a suitable choice for this case (the error is less than 5%). Moreover, the value of Ac has a direct impact on
computational demands when the stochastic turbulent velocity field is generated. The computation is limited
only to the points satisfying the relation 20. The memory requirements and time costs decrease significantly
with increasing of cut coefficient Ac (see Figure 8) during the stochastic reconstruction.
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4. CONCLUSION
This paper describes the Stochastic Noise Generation and Radiation (SNGR) model and its application to

low Mach number free jet application.
We mainly tested the influence of source region size on the SNGR model solution, specifically an acoustic

intensity was chosen as a comparative variable. The size of source region is determined by a cut coefficient
which specifies the points contributing to source region based on the value of turbulent kinetic energy. It can
be seen that this cut coefficient has direct impact on accuracy and time demands of calculation. Hence, we try
to set the largest possible value of this cut coefficient fulfilling the required accuracy. Note that the increasing
cut coefficient significantly decreases the time costs of the stochastic reconstruction and hence of the entire
SNGR model.
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