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ABSTRACT 

Sound transmission between rooms is often encountered for the acoustic design and noise control engineers. 

A clear understanding on the acoustical behavior of rectangular cavities connected by flexible panel structure 

can be of the fundamental significance. In this paper, sound transmission between rooms through the flexible 

partition with its edges elastically restrained is investigated. Both the translational and rotational springs are 

assumed along each panel edge to simulate the structural boundary conditions. The energy variational 

formulations in conjunction with Rayleigh-Ritz procedure are employed for this structural-acoustic coupling 

system modeling with the improved Fourier series constructed as the admissible functions, in which the 

supplementary terms are introduced to overcome potential discontinuities associated with the spatial 

derivatives of the conventional Fourier series on the panel-cavity interface as well as the panel elastic edge 

supports. Numerical examples are then presented to demonstrate the reliability and effectiveness of the 

current model through the comparison with the predicted data obtained by Finite Element Analysis using 

NASTRAN. Effect of the position and boundary restraining condition of flexible partition on the sound 

transmission characteristics of coupled rooms is analyzed in detail. Finally, some useful and interesting 

findings from this work are given in the conclusion section. 
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1. INTRODUCTION 

Nowadays there is an increasing desire for stability of mechanical structures and comfort of 

environment, indoor sound field noise control is widely concerned in various fields of engineering and 

technology, such as vehicular cabins, aircraft fuselages, acoustical instruments, building constructions 

and so on. Due to the practical importance, various studies have been proposed to predict the modal 

characteristics and forced response of room sound field in the past decades. Almost all the acoustic 

problems are related to vibro-acoustic interactions, and hence the vibro-acoustic coupling system has 

received more and more considerable attention.  

Broadly speaking, Dowell and Voss (1) did the initial work in the vibro-acoustic coupling area. 

They presented the natural modes and frequencies for a vibrating plate located on one side of a 

rectangular box. Then in 1968, nonlinear plate stiffness and mutual interaction between the plate and 

external and/or internal sound field were considered by using the method of modal expansions for the 

plate and cavity (2). As the developing of theoretical model, Dowell et al (3) demonstrated full 

coupling between the wall and interior acoustic cavity based on the theory of acoustoelasticity, and 

simplified formulae for interior sound levels in terms of cavity, wall and external acoustic field 

parameters were developed, which laid the foundation for future development of vibro-acoustic 

coupling problems. After that, absorption material and a double wall/cavity system were introduced in 

the noise control of the cavity interior sound field (4), they used the same method to predict the noise 

transmission through a single wall or a double wall/cavity system into a cavity. Therefore an accurate 

characterization of the sound-structure interaction plays a key role in the prediction of acoustic field.  

The mode superposition method usually used in structural modeling for dynamics in these past, it 

had been widely used to obtain governing equations since it was extended to the coupling system (5 -8). 

In the paper given by Pan and Bies (9, 10), a solution for the decay time and resonance frequency of the 
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free-vibration mode of a panel-cavity system was determined from both theoretical and experimental 

ways, in which the boundary condition of the panel was set to simply supported. Scarpa and Curti (11) 

analyzed a rectangular acoustic cavity closed at one end by a simply supported plate with isotropic 

material. They employed Kirchoff-Vaslov equations to describe the modal vectors of the uncoupled 

structures without considering rotary inertia or shear deformations. Al-Bassyiouni and Balachandran 

(12) took the sound field outside the enclosure into account to construct the model of a rectangular 

enclosure with rigid walls and one flexible panel, and applied Active Structural Acoustical Control on 

the system. 

Beyond the work done for cavities with simple geometry, Li and Cheng (13) introduced a leaning 

wall in a rectangular-like cavity. Acoustic modes and the coupling characteristics of the 

irregular-shaped system were investigated by using the combined integro-modal approach. Hong and 

Kim (14,15) proposed a formulation of a one-dimensional acoustic pipe whose one end was closed and 

the other end was coupled to a one-degree-of-freedom mass-spring system as the source. Then, the 

equations were solved by the modal expansion method using uncoupled natural modes of the 

sub-systems. Furthermore, they investigated the effects of acoustic absorbing material applied on all or 

part of the structure, as well as the viscous or structural damping elements in the system. Lee et al 

(16,17) proposed a new coupled structural–acoustic model composed of double cavities connected by 

a neck simulating a passenger compartment with a trunk compartment, the vibro-acoustical behavior 

had been theoretically and experimentally discussed. 

In recent years, a structural-acoustic model of a rectangular acoustic cavity bounded by a flexible 

plate with elastically restrained edges was developed by Du et al (18) in which the 2D and 3D 

improved Fourier series were used to represent the displacement on the plate and the sound pressure 

inside the cavity, respectively. The numerical results matched very well with the comparison results. 

This work is an extension of the work carried out by reference (18), where the vibro -acoustic analysis 

of a three-dimensional acoustic cavity bounded by a flexible panel with general elastically restrained 

boundary conditions was presented by using the improved Fourier series method. By contrast, the 

overall purpose of the current work is to study the indoor sound field between two rectangular rooms 

coupled through a flexible partition. There are three components in the whole coupled system, the 

admissible functions of a panel structure and two rooms will be presented by two-dimensional and 

three-dimensional improved Fourier series, respectively. The use of this method can overcome the 

discontinuities of the admissible functions in the whole solution domain. Then the Rayleigh -Ritz 

method will be employed to solve the eigenvalue problem of the coupled system. To validate the 

current approach, numerical results are presented and discussed by comparing with the results 

calculated by finite element method from Nastran. It is noteworthy that the boundary conditions of the 

partition are mostly restricted to classical types in existing literatures, but in engineering practice , the 

boundary restrained should be more complex. Therefore, the elastically boundary restrained partition 

will be considered. In addition, the different positions of the panel structure in the whole enclosure are 

also studied to deeply understand its influence to the modal properties of the coupled system. 

2. THEORETICAL FORMULATIONS 

2.1 Problem description 

To investigate the sound transmission between two rooms coupled through partition, a simplified 

theoretical model for the modal analysis of two rectangular rooms connected via a flexible panel is 

considered, as shown in Figure 1. The floor of room1 is taken at z=0. The size of two rooms is 

considered as a×b×h1 and a×b×h2, respectively. The upper side of room1, also the bottom side of room2, 

is covered by a flexible rectangular partition with a thickness of hp. As the figure shown, room1 and 

room2 both consist of five rigid walls and one elastically boundary restrained flexible panel. Two 

sets of linear springs are assumed to express translational and rotational springs along each panel 

edge to simulate the structural boundary conditions of the panel. The stiffness of translational 

springs along x=0 edge is presented by the symbol kx0, Kx0 presents the rotational springs stiffness at 

the same time. Through adjusting the stiffness coefficient, various boundary conditions can be 

obtained, as the stiffness of boundary restrained springs being equal to zero or infinity, all the 

classical boundary conditions can be obtained as special cases.  
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Figure 1 The coordinate system for two rooms coupled through flexible partition with elastically 

restrained edges 

2.2 Series representation of filed functions for the coupled system 

In the coupled system, the transverse bending displacement of the panel and the acoustic pressure in 

two rooms are interacted with each other. The transverse bending vibration of the panel radiates 

acoustic waves into the acoustic field in the rooms; the acoustic waves excite the panel vibration at the 

same time. For the transverse bending problems of the panel, the improved Fourier series method 

constructed in reference (19) is employed in this study, the displacement function can be expanded as 
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where p
x

p

xm
m a  , p

y

p

ym
m b  ,and the supplementary functions are chosen in the following 

form 

     1 9 sin 2 4 sin 3 2 12a p p px a x a a x a       (2a) 

     2 9 cos 2 4 cos 3 2 12a p p px a x a a x a        (2b) 
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     3 3 3 3

3 sin 2 sin 3 2 3a p p px a x a a x a       (2c) 

     3 3 3 3

4 cos 2 cos 3 2 3a p p px a x a a x a        (2d) 

At the edge of the panel, the first and third derivatives of supplementary functions listed above 

take the special value of        1 2 3 40 0 1a a a aa a          , all the other derivatives are 

identically equal to zero, which means the possible discontinuities of displacement function can be 

avoided through introducing the supplementary functions in the mathematical calculation. 

Furthermore, with all the supplementary functions, the convergence speed for different boundary 

conditions can also be improved. 

Recently, the improved Fourier series method was extended to analyze the sound field of 

three-dimensional rectangular acoustic cavities with arbitrary impendence boundary conditions (20). 

For this study, two rooms are connected via a communal wall, namely a flexible panel with 

elastically boundary restrained; other walls are all rigid. In order to analyze the pressure and velocity 

distributions in the coupling interface correctly and conveniently, the sound pressure of two rooms 

can be rewritten as: 
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The relevant derivatives of these supplementary functions across the end surface can be obtained 

as 

     2 2 1 20 0 0c c ch     ,  2 0 1c   (6a, b) 

     1 1 2 1 20 0c c ch h     ,  1 2 1c h   (7a, b) 

It is noteworthy that with all unknown Fourier series coefficients being solved, the displacement 

and the sound pressure functions are capable of representing the exact solution to the problem.  

2.3 Solution of the room-panel-room coupling system 

In order to solve the vibration and acoustic coupling problem, the energy formulation description 
will be used to drive the governing equation for three coupled systems. Ordinarily, this method is 

considered as an approximate calculation method in solving structural dynamic problems (weak form). 
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In this work, since the displacement and sound pressure functions of the coupling system are all 

sufficiently smooth in the whole solving domain including the edges and surfaces of the structure, the 

weak solution is also seen as accurately enough. 

Firstly, for the flexible panel partition, its Lagrangian of the plate structure is defined as 

1& 2&p p p c p c pL U T W W     (8) 

in which, Up is the elastic strain energy of the panel due to the transverse vibration; Tp is the kinetic 

energy of the vibrating panel; Wc1&p is the work associated with the sound pressure of room1; and the 

last term Wc2&p is the work associated with the sound pressure of room2. 

For small amplitude vibration, the total potential energy of the flexible panel including elastic 

strain energy as well as the potential energy stored in the elastic boundary restraints can be written 

down as 
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where,  3 212 1D Ec   
 

 denotes the flexural rigidity, and μ is the Poisson’s ratio. 

The kinetic energy associated with the vibrating panel can be expressed as 
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in which ρp is the mass density of the panel; hp is the thickness of the panel. 

The work associated with the sound pressure of rooms is 
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Then, for the coupling acoustical cavities, the Lagrangian function of two rooms are defined as 

1 1 1 & 1p cL U T W    (13) 

2 2 2 & 2p cL U T W    (14) 

in which the term U1 and U2 are the acoustic potential energy of two rooms; T1 and T2 are the kinetic 

energy of two rooms; Wp&c1 and Wp&c2 are the work associated with the vibration of the panel.  

The acoustic potential energy of two rooms can be calculated from 
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in which ρ0 and c0 are the mass density and sound speed of the acoustic medium in rooms, respectively. 
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The kinetic energy of two rooms is 
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The work associated with panel vibration is equal to the work associated with the sound pressure of 

two rooms, that is 

& 1 1&p c c pW W , & 2 2&p c c pW W  (17a, b) 

To find the extremum of the Lagrangian functions, the Rayleigh-Ritz procedure is used. In this case, 

minimizing the Lagrangian functions with respect to each unknown Fourier series coefficient. Following 

the Rayleigh-Ritz procedure, substituting the expansion of displacement function in equation (1) and the 

sound pressure functions in equation (3, 4) into the above three Lagrangian functions, minimizing 

equations will lead to the following matrix equation of the structural-acoustic coupling system: 
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The solution of equation (19) gives all the unknown Fourier series coefficients of the displacement 

and sound pressure functions of two rooms coupled through partition system, we can also obtain the 

system natural frequencies and mode shapes by solving the normal eigenvalue problem in equation 

(19). 

3. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, several numerical examples will be presented to demonstrate the accuracy and 

reliability of the theoretical model constructed before studying the structural-acoustical behavior of 

rectangular rooms coupled through flexible panel structure. Since little data can be found in the 

literature for the room-panel-room model, the results by Finite Element Analysis from NASTRAN is 

employed for comparison. In the following cases, all the geometrical and material properties of 

analytical model are given in Table 1. 

Table 1 – Geometrical and material parameters used in the simulation model of room-panel-room 

Room1 Panel Room2 Air 

a=0.3 m 

b=0.38 m 

h1=0.65 m 

Young’s modulus=71 GPa 

Density=2700 Kg/m
3
 

Poisson’s ratio=0.3 

Thickness=3 mm 

a=0.3 m 

b=0.38 m 

h2=0.45 m 

Density=1.21 Kg/m
3
 

Sound velocity=340 m/s 

For the purpose of verification, three uncoupled systems are firstly studied. The natural 

frequencies are calculated for two rigid acoustic rooms and a single flexible panel structure with 

simply supported (which will be denoted by SSSS) boundary conditions. For the present model, the 

SSSS boundary condition can be obtained by setting the stiffness of translational springs as infinity 

(5×10
9
 in the numerical calculation), the stiffness of rotational springs as zero at the same time. 

Table 2 and Table 3 tabulate the first six natural frequencies for three uncoupled systems and the 

system after coupling. 

Table 2 – The first six natural frequencies of two rigid acoustical cavities and an single SSSS panel 

Mode 
Room1 Panel Room2 

Present FEM Present FEM Present FEM 
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1 261.539  261.538  131.986  131.618  377.778  377.778  

2 447.368  447.368  283.947  283.178  447.368  447.368  

3 518.209  518.209  375.721  375.007  566.667  566.667  

4 523.077  523.077  527.751  525.859  585.538  585.538  

5 566.667  566.667  537.153  535.845  681.049  681.049  

6 624.110  624.110  781.062  777.609  721.976  721.976  

 

Table 3 – The first six natural frequencies of the room-panel-room coupling system 

Mode Present FEM Difference (%) Rigid body mode 

1 132.987  133.297 0.23  Panel 

2 263.630  263.660 0.01  Room1 

3 279.770  280.248 0.17  Panel 

4 371.014  372.027 0.27  Panel 

5 379.417  379.446 0.01  Room2 

6 447.368  447.368 0.00  Room1 
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Figure 2 – The first six mode shapes for the room-panel-room coupling system: 

(a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; and (f) sixth.  

The data tabulated in Table 2 and Table 3 shows that good agreements can be obtained between 

the current model and finite element analysis. It can be observed that for each natural frequency of 

the coupled system, it is very near to natural frequency of each uncoupled component. The 

structural-acoustic coupling between the cavity, panel as well as cavity leads to slight shift for the 

resonant frequency. In order to better understand the vibro-acoustic coupling phenomena, the first 

six mode shapes for each component of room-panel-room coupling system are also plotted in Fig. 2. 

It can be clearly seen that the eigen-distributions of displacement and sound pressure in such 

coupling system.  

Take room1 and room2 as a whole room with height h=h1+h2=1.1 m, the position of the panel in 

the room can influence the dynamic behavior of the coupled system. To investigate the effect of the 

position of the panel in the room, five different positions are considered in Table 4.  

Table 4 – Natural frequencies for the coupled system with different positions of the panel  

Mode Frequency (Hz) 

position 

of the 

plate 

h1=0.95 m 

h2=0.15m 

h1=0.85 m 

h2=0.25m 

h1=0.75 m 

h2=0.35m 

h1=0.65 m 

h2=0.45m 

h1=0.55 m 

h2=0.55m 

Present FEM Present FEM Present FEM Present FEM Present FEM 
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1 135.693  136.167  133.902  134.245  133.253  133.715  132.987  133.297  132.911  133.371  

2 182.736  182.829  202.906  202.957  229.092  229.138  263.630  263.660  279.774  280.404  

3 279.201  279.956  279.648  280.187  279.748  280.378  279.770  280.248  309.091  309.091  

4 358.762  358.781  370.960  372.829  371.009  372.406  371.014  372.027  312.838  312.909  

5 370.648  372.013  400.773  400.790  447.368  447.368  379.417  379.446  371.013  372.817  

6 447.368  447.368  447.368  447.368  449.133  449.167  447.368  447.368  447.368  447.368  

7 450.592  450.660  449.543  449.582  453.919  453.941  448.953  448.981  448.901  448.931  

8 482.659  482.679  490.891  490.908  486.457  486.533  519.151  519.170  522.907  523.728  

9 522.686  523.235  522.903  524.126  502.410  502.429  521.875  522.003  533.606  535.627  

10 531.339  532.620  533.609  535.522  522.918  524.318  522.910  523.357  543.761  543.761  
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Figure 3 – Natural modes of coupling system with different position of the panel  

Figure 3 shows the first five natural frequencies of coupling system varying with different 

positions of the panel. It can be observed that different positions of the panel do not have a 

meaningful impact on the first order natural frequency. This is due to the first order rigid body mode 

is distributed by the panel itself. From the second to fifth order natural frequency, the frequencies are 

sensitive to the increasing position of the panel, which is caused by the dynamic behavior of 

different components of the coupled system. 

It is further noticed that the boundary conditions of the panel have influence on the mode 

characteristics of the coupled system. Therefore, the effect of boundary restraining condition of the 

panel on the sound transmission characteristics of coupled rooms will be analyzed. As mentioned 

before, it is convenient to obtain all kinds of boundary conditions for the panel through adjusting the 

stiffness of translational and rotational springs along each panel edge. Different boundary conditions 

of the panel are considered in Table 5 and Table 6. It is interesting to find that the stiffness of 

translational panel boundary restrained springs have more influence to the natural frequencies of the 

coupled system than the rotational springs. 

Table 5 – Natural frequencies for the coupled system with different stiffness of translational panel 

boundary restrained springs 

Mode Frequency (Hz) 

restrained 

stiffness 

k=5e9 K=0 k=5e5 K=0 k=5e4 K=0 k=5e3 K=0 k=0 K=0 

Present FEM Present FEM Present FEM Present FEM Present FEM 
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1 132.987  133.297  93.114  90.901  55.435  55.609  18.376  18.846  0.001  - 

2 263.630  263.660  153.346  152.571  57.083  58.333  19.575  20.236  0.005  - 

3 279.770  280.248  174.108  176.010  61.167  63.082  41.621  41.947  39.479  - 

4 371.014  372.027  223.813  227.393  111.318  113.432  89.259  90.167  86.415  87.137  

5 379.417  379.446  231.501  238.711  127.202  130.036  110.201  111.340  108.167  109.075  

6 447.368  447.368  263.628  264.137  196.150  199.097  184.196  185.569  182.843  184.058  

7 448.953  448.981  292.670  302.662  221.205  223.624  209.393  210.679  208.037  209.185  

8 519.151  519.170  312.727  319.988  258.477  261.153  247.768  249.075  246.547  247.690  

9 521.875  522.003  344.795  355.202  264.104  264.151  264.038  264.082  264.031  264.075  

10 522.910  523.357  380.861  380.957  322.001  324.816  315.619  317.380  314.911  316.554  

 

Table 6 – Natural frequencies for the coupled system with different stiffness of rotational panel 

boundary restrained springs 

Mode Frequency (Hz) 

restrained 

stiffness 

k=5e9 K=0 k=5e9 K=5e3 k=5e9 K=5e4 k=5e9 K=5e5 k=5e9 K=5e9 

Present FEM Present FEM Present FEM Present FEM Present FEM 

1 132.987  133.297  187.948  182.065  227.941  227.629  235.148  236.212  235.996  236.988  

2 263.630  263.660  264.420  264.404  266.649  266.756  267.750  268.118  267.921  268.255  

3 279.770  280.248  342.149  328.739  379.699  379.756  379.741  379.805  379.746  379.800  

4 371.014  372.027  379.540  379.583  400.810  398.779  413.002  414.250  414.501  416.248  

5 379.417  379.446  447.368  427.828  447.368  447.368  447.368  447.368  447.368  447.368  

6 447.368  447.368  447.637  447.368  451.012  451.012  452.006  452.266  452.178  452.511  

7 448.953  448.981  449.427  449.397  519.499  519.538  519.589  519.645  519.602  519.656  

8 519.151  519.170  519.266  519.296  523.667  523.680  523.686  523.709  523.688  523.709  

9 521.875  522.003  523.506  523.335  528.580  525.680  545.114  546.552  546.990  548.672  

10 522.910  523.357  566.667  566.667  566.667  566.667  566.667  566.667  566.667  566.667  

4. CONCLUSIONS 

The investigation of the vibro-acoustics for two coupled rooms through flexible partition has been 

performed based on the energy principle. Mathematically, it means that there is a complex 

acoustic-vibro-acoustic coupling problem on the surface of the partition, the vibration of the panel is 

not only coupled with the sound field of room1, but also coupled with the sound field of room2. There 

is considerable impedance discontinuity between the panel structure and two cavities. The improved 

Fourier series method is applied to construct the transverse bending displacement function of the panel 

structure and the sound pressure functions inside two coupled rooms. The displacement function is 

derived by the summation of a traditional two-dimensional Fourier series and eight items of 

supplementary function multiply single cosine function, and the sound pressure function is derived by 

the summation of a normal three-dimensional Fourier series and a set of supplementary function 

multiply two-dimensional Fourier series. 

Rayleigh-Ritz procedure is employed to derive the eigenvalue equation of the coupled system. The 

solution can be also extended to derive the forced response functions. High accuracy, stable numerical 

computation has been observed in the analysis. For demonstration, the natural frequencies of the 

coupled system of different panel positions and boundary conditions have been studied in detail. The 

results computed by finite element method using NASTRAN are used as comparison results for the 
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proposed analysis. The comparison work shows that he proposed model are reliable and efficient. The 

first six mode shapes for the coupled system with SSSS boundary restrained of the panel are given. The 

method is also applicable to each single component in the system. 
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