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ABSTRACT 

The need to extract a single audio signal of interest from a multi-source and noisy environment is common 

across many disciplines. Adaptive beamforming, due to its superior interference rejection and noise 

suppression, is a preferred processing technique for obtaining high quality audio in noisy environments. In a 

previous study, we have examined the performance of two classes of adaptive beamforming, namely, time 

domain and time-frequency domain adaptive beamforming, under the conditions that the sound sources were 

stationary and the signal model was accurate. In this paper, we extend the study to the situations where the 

sources are moving and certain amount of signal mismatch is allowed. Four different types of adaptive 

beamformers are considered. The robust Capon beamformer is used for time-frequency domain 

beamforming.  The tapped delay line (TDL) structure is adopted for time domain adaptive beamforming. 

Three different adaptive algorithms are used for obtaining the optimal TDL filters. These are the sample 

matrix inversion method, the recursive least squares method with sliding window, and the block constrained 

least mean square method with diagonal loading. In the paper, the performances of those four adaptive 

beamformers are evaluated in terms of fidelity of the beamformer output, robustness of the system, and the 

computational complexity of the algorithm. It has been found that the robust Capon beamformer provides 

better performance than the time domain beamformers. 
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1. INTRODUCTION 

Adaptive beamforming is a preferable technique over its non-adaptive counterpart for extracting a 

single audio signal of interest from a multi-source and noisy environment due to its far superior 

interference rejection and noise suppression. In a previous study [1], we have examined the 

performance of two classes of adaptive beamforming, namely, time domain and time-frequency 

domain adaptive beamforming, under the conditions that the sound sources were stationary and the 

signal model was accurate. In this paper, we extend the study to the situations where the sources are 

moving and certain amount of signal mismatch is allowed. Four different types of adaptive 

beamformers are considered. The robust Capon beamformer is used for time-frequency domain 

beamforming.  The tapped delay line (TDL) structure is adopted for time domain adaptive 

beamforming. Three different adaptive algorithms are used for obtaining the optimal TDL filters. 

These are the sample matrix inversion method, the recursive least squares method with sliding window, 

and the block constrained least mean square method with diagonal loading. In the paper, the 

performances of those four adaptive beamformers are evaluated in terms of fidelity of the beamformer 

output, robustness of the system, and the computational complexity of the algorithm.  

2. Beamformers 

2.1 Time-frequency domain adaptive beamformer (TFDABF) 

The beamformer in the time-frequency domain implementation begins with time series array data. 

The array data are Fourier transformed to the frequency domain and processed by a frequency domain 

beamformer. The output of that process is then inverse-Fourier transformed back to time domain for an 

audio output. Figure 1 shows the schematic presentation of the time-frequency domain beamformer. 
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Figure 1 – Schematic presentation of the time-frequency domain beamformer  

 

The beamformer used for the frequency domain processing is the Robust Capon Beamformer 

(RCB) presented in [2], a type of diagonally loaded Minimum Variance Distortionless Response 

(MVDR) beamformer. It should be noted that the original purpose of the RCB method is to make the 

algorithm robust to errors in the signal model, and the appropriate value for the loading is determined 

by the anticipated signal mismatch. For the audio application, however, loading is introduced for 

another purpose [3]. Some degree of loading is required in audio processing to limit the so called white 

noise gain (WNG) [4] of the beamformer, even in the absence of any signal mismatch. The WNG must 

not be too high because the weights of a classic frequency domain beamformer are obtained through 

averaging L blocks of data whereas for audio signals they need to be calculated using individual blocks 

of data (i.e. no averaging). Within each block of data the noise may be stronger in different bearings  

than those of an average. With a high WNG, this noise might be amplified and interfere with the signal 

of interest [3]. 

2.2 Time domain adaptive beamformers (TDABF) 

The beamformers used for the time domain implementation are based on one of the most commonly 

used time domain adaptive beamforming structure that employs banks of adaptive finite impulse 

response (FIR) filters, or tapped delay line (TDL) structure, between the delays and summation point 

of the well-known conventional delay-and-sum beamformer, as illustrated in Figure 2. The 

coefficients or weights of those FIR filters are adapted accordingly to the characteristics of noise and 

interference presented such that the noise and interference from non-look-directions are minimized. 

Three adaptive algorithms are considered for obtaining those optimal FIR filters. These are the sample 

matrix inversion method, the recursive least squares method with sliding window, and the block 

constrained least mean square method with diagonal loading. 

 

2.2.1 Sample matrix inversion method (SMI) 
Following the notation in Frost

 
[5] and referring to Figure 2, we have the input vector, 
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the weight vector, 
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and the covariance matrix, 
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where E[ ] denotes the statistical expectation. The output of the beamformer is 
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Figure 2 – Adaptive beamformer structure using TDL filter 

 

The optimal weights are the solution of the following minimization problem: 
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where C is the constraint matrix and F0 is the vector specifying the frequency response in the look 
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block length, and k in Eq. (8) stands for kth block instead of kth sample. 

 

2.2.2 Recursive least squares method with sliding window (RLSSW) 
The essence of RLS algorithm is to estimate the inverse of covariance matrix in Eq. (7) recursively 

so that the expensive operation of matrix inversion can be avoided [6]. In RLSSW, the statistical 

expectation in Eq. (3) is replaced by the sample averaging in time with a rectangular sliding window, 
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where L is the sliding window length. Eq. (9) can also be written as 
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Using Matrix Inversion Lemma twice, we obtain the equations for updating the inverse of 𝑅𝑋𝑋(𝑘): 

  
)()1()(1

)1()()()1(
)1()(

1

11
11

LkXkRLkX

kRLkXLkXkR
kRkR

XX

T

XX

T

XX
XXXXL











, (11) 

  
)()1()(1

)1()()()1(
)1()(

1

11
11

kXkRkX

kRkXkXkR
kRkR

XXL

T

XXL

T

XXL
XXLXX











. (12) 

The reason that we use a rectangular sliding window instead of a commonly adopted infinite 

exponential window to formulate the recursive algorithm is that we want to use the diagonal loading 

technique to improve the robustness of the adaptive algorithm. As discussed in Ma and Wu [7], 

including diagonal loading in RLS with an infinite exponential window is not trivial. Any amount of 

loading added in the initial condition will reduce rapidly towards zero after a certain number of 

iterations. Whereas for RLSSW, as there is no forgetting factor in the updating equations, any initial 

loading added will remain unchanged. To further reduce the computational complexity of the adaptive 

algorithm, Wopt in Eq. (7) will be updated in a block manner. 

 

2.2.3 Block constrained least mean square method with diagonal loading (BCLMSDL) 
In order to further reduce the computational complexity of the RLS algorithm, Frost [5] developed 

a simple stochastic gradient-descent algorithm called the constrained LMS (CLMS) algorithm where 

the weights of the adaptive beamformers can be iteratively updated to converge to Wopt via the 

following equations: 
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where µ is the step size for regulating the convergence rate of the algorithm. 

Including diagonal loading in CLMS is straight forward. Eq. (14) can also be written as 
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Substituting instantaneous estimation of covariance matrix X(k)X
T
(k) with its loaded version of 

X(k)X
T
(k)+σI gives 
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where σ is the loading coefficient for regulating the mount of loading added. Eq. (18) can further be 

simplified as 
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Derivation of a block version of Eq. (19) is also straight forward. By replacing y(k)X(k) with its 

time average, we obtain the block version of equation for updating W(k): 
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where L is the block length. It should be noted that k in Eq. (20) stands for kth block instead of kth sample. 

3. Performance evaluation 

In this section, the performances of the four beamformers are evaluated in the presence of signal 

mismatch and with a moving sound source. The evaluation is based on the coherence between the 

beamformer output and the signal of interest, as well as the robustness of the beamformers and the 

computational complexity. The coherence  is based on the correlation coefficient, defined in a way 

that accounts for a time delay between the signal s(t) and the beamformer output y(t),  

)}({COV)}({COV

|)}()({COV|
max

22 




 




tyts

tyts
, (21) 

Here COV{} denotes the covariance.  Note that  has a value between 0 and 1, with value 0 indicating 

no correlation between the signal and beamformer output, and value 1 indicating that the two 

waveforms are proportionally identical. 

The array considered is a uniform linear array consisting of 10 sensors with an inter-element 

spacing of 0.75m. The speed of sound is taken as 1500 m/s. As a result, the design frequency of the 

array is 1000 Hz. The sampling frequency is chosen as 4000 Hz. 

The frequency resolution (binwidth) in the TFDABF is 8 Hz. This frequency resolution is 

experimentally found capable of adequately representing frequency characteristics of the signal, 

without excessive long integration time. If the frequency resolution is too low, adequate beamforming 

in frequency domain is not achieved, resulting in a lower coherence. On the other hand, a finer 

frequency resolution demands longer integration time for obtaining the cross spectral matrix, which in 

the case of moving sound sources results in a poor estimate of that matrix and hence again a lower 

coherence. The bearing resolution of the TFDABF is 1°, which limits the maximum of the look 

direction mismatch (LDM) of the beamformer to 0.5°. 

The FIR filters in the TDABF have 32 taps. A larger number of taps will always result in a higher 

coherence but is accompanied by a greater computational cost. Therefore, a trade -off between these 

two is made, with 32 taps achieving high coherence for the given sound sources while maintaining a 

reasonable computational cost. In order to increase the bearing resolution of the TDABF, the 

interpolation technique described in [8] is used. The interpolation factor is chosen as 30, which gives 

the bearing resolutions between about 1° and 10° and the corresponding maximum of LDM between 

about 0.5° and 5°, dependent of steering directions.  

One signal and two interference sound sources are in far field to the array. They all emit sound 

waves consisting of two tonal components. The tonal frequencies of the signal are chosen as around 

700 and 900 Hz. The tonal frequencies of the interferences are shifted 20 Hz away from those of the 

signal, one to the lower end and the other to the higher end.  As there is performance difference in 

TFDABF depending on whether those frequencies of sound sources are on or off the FFT frequencies 

[1], the tonal frequencies in TFDABF are randomly chosen within one binwidth around 700 and 900 

Hz in each simulation run in order to have a fair comparison to the time domain beamformers. The 

phases of the tonal components in the signal and interferences are also randomly selected at the start of 

each simulation run. A uniformly distributed random noise of 0 dB relative to the signal is added at 

each sensor output to simulate all the other noises in the system. The signal source moves in a manner 

that results in a constant bearing rate to the array. The two interference sources are stationary and 

separated from the signal source in bearing of about 30 and -30 degrees apart from the signal source, 

respectively. The powers of both interferences are 10 dB higher than that of the signal.  The error on the 

signal model or signal mismatch is realised by applying certain percentage of random deviations to the 

normal values of each sensor output. In this study, 30% of signal mismatch is applied. 

The results shown in the following are all obtained by averaging 200 simulation runs.  All the 

adjustable parameters of the four beamformers, such as the integration time and the user parameter of 

RCB, step size µ, loading coefficient σ, block length L, sliding window length L, etc., are optimally 

tuned. 

Scenario 1: Signal source at broadside with lower bearing rate. 

In this scenario, the signal source moves from -1° to 1° with a bearing rate of 0.02°/second. The 

bearing resolution of the time domain beamformers in this bearing range is about 1°, similar to that of 
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TFDABF. The main beam width of the beamformers in this direction is also the narrowest. The 

bearings of the two stationary inference sources are -30° and 30°, respectively.  

 

 

Figure 3 – Time history of the coherences of the four beamformers in Scenario 1   

 

Figure 3 plots the time history of the coherences achieved by the four beamformers. Following 

observations can be made. 

 The coherences of the four beamformers all undergo up and down courses. These ups and 

downs are coincident with the change of LDM. The coherences peak when there is no LDM and 

drop to the bottom when LDM is at its maximum. 

 The TFDABF achieves higher coherence than those of the TDABFs. The gaps between the 

highs and lows of the coherence of the former are also smaller than those of the latter (about 

0.004 against 0.010). Considering the fact that the coherence achieved by TDABF with 

stationary sources and without model errors is very similar to that of TFDABF [1], this result 

indicates that the TFDABF with RCB provides more robust performance.  

 As for the performances of the three TDABFs, they are quite similar.   

Scenario 2: Signal source at broadside with higher bearing rate 

In this scenario, the signal source moves from -5.2° to 5.2° with a bearing rate of 0.2°/second, 10 

times higher than that in Scenario 1. The bearing resolution of the time domain beamformers in this 

bearing range remains about 1°. The main beam width of the beamformers in this direction is also 

narrow. The bearings of the two stationary inference sources are -30° and 30°, respectively.  

 

 

Figure 4 – Time history of the coherences of the four beamformers in Scenario 2   

 

Figure 4 plots the time history of the coherences achieved by the four beamformers. From the figure, 

the coherences of all four beamformers still go up and down with the change of LDM. The coherence 

achieved by the TFDABF is similar to that in Scenario 1 and higher than those of the TDABFs, 

showing the robustness of the TFDABF to fast moving sources. As for the performances of the three 

TDABFs, they are still similar, with BCLMSDL noticeably better than RLSSW and SMI. This 
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indicates that BCLMSDL is more robust to fast moving sources than the other two TDABFs. 

Scenario 3: signal source away from broadside with higher bearing rate 

In this scenario, the signal source moves from 50° to 60° with a bearing rate of 0.2°/second. The 

bearing resolution of the time domain beamformers in this bearing range is about 1.6°, greater than that 

of TFDABF. The beam widths of the main lobe and side lobes of the beamformers in this direction 

become broader. The bearings of the two stationary inference sources are 30° and 90°, respectively.  

 

 

Figure 5 – Time history of the coherences of the four beamformers in Scenario 3   

 

Figure 5 plots the time history of the coherence achieved by the four beamformers.   

It can be seen that the coherences of all four beamformers drop as their steering directions move 

towards endfire direction (ie, from 50° to 60° as time increases). This is because broadening of the 

beam widths of the beamformers towards endfire allows more noise to get into the beamformer’s 

output thereby reducing the effectiveness in noise and inference suppression.  

Up to 58° (40 seconds in time), the coherence of the TFDABF is still higher than those of the 

TDABFs. As the bearing resolution of the TDABFs is poorer than that of the TFDABF, the lows of the 

coherences (where LDM is at its maximum) of the former are much lower than that of the latter. 

Therefore, overall the TFDABF gives better performance than the TDABFs in terms coherence and 

robustness in this scenario. 

As for the three TDABFs, the coherence of RLSSW drops a lot more than those of the other two as 

the signal source moves towards endfire direction. This indicates that RLSSW is less robust to a fast 

moving source towards endfire direction than the other two TDABFs. 

 

 

 

Figure 6 – Time averaged coherences of four beamformers in three scenarios    
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Table 1 – Computational complexity ratio of the four beamformers 

 TFDABF SMI RLSSW BCLMSDL 

Complexity ratio 1 27 200 11 

 

Figure 6 summarises the performances of the four beamformers in all three scenarios by comparing 

their time averaged coherences. Table 1 compares the computational complexity of the four 

beamformers by the complexity ratio (taking that of TFDABF as 1).  It should be noted that the 

computational complexity of SMI is many times lower than that of RLSSW despite of the matrix 

inversion in SMI. This is because the matrix inversion in SMI is only carried out once for many 

hundreds of samples while recursively updating 𝑅𝑋𝑋
−1  in RLSSW has to be performed every sample.   

From the figure and the table, the TFDABF scores the best in terms of coherence and the 

computational complexity. Its coherence is consistently higher than those of the TDABFs  in all three 

scenarios, and its computational complexity is 11 times lower than that of BCLMSDL (the best of 

TDABFs) and 200 times lower than that of RLSSW. It is also very robust. One of the features of RCB 

in TFDABF is that the equivalent diagonal loading added in the system is not fixed and uniform as 

those of the three TDABFs but adapted according to the beamformer’s input [2]. This could be the 

reason that the TFDABF provides a better performance in terms of coherence and robustness .  

One drawback of the TFDABF is its latency. The delay time from input to output of the TFDABF in 

the system considered in this study is about 1.2 seconds. For those applications where this latency 

cannot be tolerated, TDABF has to be used. Among the three TDABFs, BCLMSDL appears to be a 

good choice. It provides a good performance in coherence with the least computational complexity.  

4. CONCLUSIONS 

We have examined the performance of four adaptive beamformers, one TFDABF and three 

TDABFs, for extracting a moving audio signal of interest from a multi-source and noisy environment 

in the situation where the signal model is inaccurate. The performance of the beamformers is evaluated 

in terms of signal fidelity, system robustness, and the computational complexity. The TFDABF has 

been found to provide a better performance in all three criterions, and therefore is recommended for 

those applications where a certain amount of latency can be tolerated. Among the three TDABFs, 

BCLMSDL has been found to give a good performance in signal fidelity with the least computational 

complexity. It is also more robust to a fast moving source. 
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