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ABSTRACT 

Transfer Path Analysis (TPA) has been conducted in order to improve the noise and vibration quality of 

mechanical structures. However, the force identification in the TPA is still challenging problem and its 

accuracy has to be improved. The Matrix Inversion Method and the Apparent-Mass Matrix Method are 

approaches for force identification. The Matrix Inversion Method estimates the excitation force by the 

product of an inverse matrix of accelerance and a vector of actual operational acceleration. It is known that 

the Matrix Inversion Method is very sensitive to measurement noise especially at the resonance. 

Apparent-Mass Matrix Method has been recently proposed, which provides more accurate results than the 

Matrix Inversion Method. However, these methods are still insufficient in accuracy, and improvement of 

identification accuracy is required. This paper proposes a new force identification method by using strain 

measurement. The method estimates the force using the Strain Frequency Response Function (SFRF) instead 

of acceleration or Apparent-Mass Matrix. It is shown that SFRFs are more strongly affected by higher-order 

modes than accelerance FRF. Therefore, we considered that more accurate force identification can be 

obtained by using SFRF than the conventional method. 
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1. INTRODUCTION 

In recent years, the techniques for reducing the noise and vibration have become important for 

improvement of the product‟s performance. In order to find effective countermeasures, the 

contributions of the identified sources are evaluated. Especially, the transfer path analysis (TPA) has 

been established for vehicle noise and vibration problems. The TPA is a technique for calculating 

contributions to the evaluation response. In the TPA analysis, the target system is separated into 

active system and passive system. The active system generates an interface load, and the passive 

system reacts to the interface load. And each contribution is calculated as a product of excitation 

force spectra and frequency response functions. Hence, the accuracy of the input force identification 

influences TPA precision. 

The excitation force needs to be measured by a load cell, but in many cases it is not possible to place 

a load cell in a proper manner due to space limitation or difficulty of keeping boundary condition . 

Therefore, It is necessary to conduct input identification using indirect measurements such as a matrix 

inversion method to obtain input. The matrix inversion method estimates the excitation force by the 

product of an inverse matrix of accelerance and a vector of actual operational acceleration. However, 

measurement errors in the accelerance matrix and acceleration vector are propagated to the identified 

force spectra through the inversion procedure
1
. In previous studies, an apparent-mass matrix method 

has been proposed
2
. In the apparent-mass matrix method an apparent mass matrix corresponding to 

an inverse matrix of the accelerance is directly estimated. Hence, inversion of the matrix is not 

necessary in estimation process. Consequently, the apparent-mass matrix method provides more 

accurate results than the matrix inversion method. Although the result improved, improvement of 

identification accuracy is still required. 

This paper investigates a new force identification method by using strain measurement. The method 

estimates the excitation force using strain frequency response functions instead of the accelerance 

matrix or the apparent mass matrix. It is understood that the ill-condition of the frequency response 
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function matrix deteriorates the accuracy of the input identification. It is expected that if at a target 

frequency the frequency response function receives an influence of high order modes, ill-condition 

of the frequency response function matrix is alleviated. In previous studies, it is suggested that strain 

frequency response functions are more strongly affected by higher-order modes than the accelerance
3,4

. 

However, a clear reason for it has not been proven in this study.  

In this paper, numerical simulations are conducted to compare the results by the proposed method 

with the conventional method. 

2. Theory 

2.1 Matrix Inversion Method 

In the matrix inversion method, frequency response functions H, response during the operating condition y 
and excitation force spectra f are related by the following expression. 
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Where  jf is the fourier spectrum of the excitation force at point j,  iy  is the fourier spectrum of 

the response at point i,  jiH ,
is the frequency response functions with input point j and response 

point i. Rewriting Eq.(1) gives 

      fHy                                (2) 

If a number of excitation points m and a number of response points n are the same (m = n), force 

spectra are identified by premultiplying the inverse of the frequency response function matrix H to 

the acceleration vector as follows. 

      yHf
1                              (3)  

On the other hand, in order to improve identification accuracy of force spectra, it is common that the 

number of response points takes more than the number of excitation points(m < n). In this case, the 

excitation force is identified by the least squares method. And this condition is desirable to increase 

the identification accuracy. Then the excitation force is identified as follows. 

      yHf
                              (4) 

where  
H is pseudo-inverse matrix           HH

ΗHHH
1  .The superscript 

H
 indicates the 

conjugate transpose. The excitation force is estimated by using the Eq.(3) or Eq.(4) 
 

2.2 Apparent-Mass Matrix Method 

In the apparent-mass matrix method, the excitation force is identified as follows 

      yGf                                 (5) 

where  G  is the apparent-mass matrix. The apparent-mass matrix estimation is the same as H2 

estimation of FRF when the number of responses are equal to the number of input forces
5
. The 

identification accuracy is improved by avoiding calculation of the inverse matrix. And the 

apparent-mass matrix method estimates the input force so that the errors of the input is minimized. 

Therefore, the apparent-mass matrix method is more advantageous than the matrix inversion method 

to input identification. 

 

2.3 Frequency Response Functions of the Beam 

In this paper, the numerical simulation is conducted to compare the results by the proposed method 

with the conventional method. The target structure is a beam supported at both ends as shown in 

Fig.1. When considering the bending vibration of the both-ends supported beam, the accelerance 

(FRF) and strain frequency response functions (SFRF) are expressed as follows. 
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Eq.(6) is the FRF, and the Eq.(8) is the SFRF, where 
rW and 

rW  are a displacement mode function, 

and a strain mode function, respectively. The strain mode function is obtained by differentiating the 

displacement mode function twice with respect to x. r, z and n are a mode order, a distance from the 

neutral axis to the surface in the bending of the beam, and number of adopted modes, respectively. 

A numerical simulation is conducted to compare FRF with SFRF. The responses are calculated by 

changing the number of adopted modes n(n=5,10,50). The frequency range is from 0[Hz] to 800 

[Hz].The bode diagrams of the FRF and SFRF (Driving Point Responses) are shown in Figs.2 and 3, 

respectively. The diagrams of Cross Responses are also shown in Figs.4 and 5. 

These results indicate that frequency response functions are affected by higher-order modes in the 

case of driving point FRF. Especially, the SFRF are more strongly affected by higher-order modes 

than the FRF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical Simulation 

The numerical simulation is conducted to compare the input identification results by the proposed 

method with the conventional method. 

3.1 Procedure of Numerical Simulation 

The numerical simulation was performed as the following procedure. 
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Fig.2–  FRF (Driving Point Resp.) Fig.3 – SFRF (Driving Point Resp.) 

 

Fig.4 – FRF (Cross Resp.) Fig.5 –SFRF(Cross Resp.) 
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Fig. 1 – Both ends Supported Beam 
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(a)Prepare the excitation force, which is a random signal that follows the normal distribution with 

mean 0 and standard deviation 1. 

(b)Obtain the response data (acceleration or strain) by multiplying frequency response functions 

(FRF or SFRF) to the excitation force generated in (a) 

(c)Put errors to the excitation force and response data(acceleration or strain)obtained in (a) and 

(b),and estimate frequency response functions (FRF or SFRF) by regarding them as measured 

data. The error data is prepared as follows: 

   

  

   Ne

Nya

N

k

k

i

N

k

k

ierror

iierror

/||

/||

2

2

,






























 Ey

                    

(10) 

where  iy           N

ii yy 1iy is a true response vector;
 

  k

iy is a response obtained in 

the k-th measurement at the point i;  iE           N

iii ee 1E is an error vector;   k
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i ejee ,,  is a random complex number with mean 0 and standard deviation 1 in 

the real and imaginary parts, respectively;
 errora is an error adjustment factor; and N is an average 

number for input identification. 

(d) Calculate the operational data without noise: the excitation force and response data (acceleration 

or strain). Put the error to the response data (acceleration or strain). 

(e) Identify the excitation force using frequency response functions (FRF or SFRF) obtained in (c) 

and the response data (acceleration or strain) in (d). 

(f) Evaluate the input identification accuracy. The frequency averaged error is an error index value 

by averaging the identification error at all frequencies. The frequency averaged error is 

calculated as follows. 
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where   kf̂  is the fourier spectrum of the excitation force that have been identified in the k-th 

frequency;   kf  is the fourier spectrum of the true value of the excitation force; and M is a 

number of frequency lines. 

 

3.2 Conditions of Numerical Simulation 

Location of the response points and excitation points are summarized in Table 1. For Case A, the 

response data includes the driving point responses, whereas for Case B, they are not included. Other 

conditions are as follows: the frequency range is from 0[Hz] to 800 [Hz]; a frequency resolution is 

0.25 [Hz]; all modal damping ratios are equal to 1%; and the number of adopted modes is 50. Two 

uncorrelated forces are applied to the system simultaneously.  Frequency response functions are 

estimated with 50 averages. The input identification is iterated 50 times. The error adjustment factor 
 

is 0.1. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Results 

The identified and true force power spectra by matrix inversion method (M.I.) are shown in Fig.6. 

Table1 Response and Excitation Conditions 

f1 f2

0.2 0.5 0.6 0.8

0.2 0.5 0.6 0.8

0.2 0.4 0.7 0.9

0.2 0.4 0.7 0.9

Case  Response Point[m]
Excitation Point[m]

A

Acceleration

0.5 0.6
Strain

Acceleration

Strain
0.5 0.6B
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Those by the apparent-mass matrix method (A.M.) are shown in Fig.7. The frequency averaged error 

is shown in Figs.8 and 9. 

For M.I. case, Case A gives better identification results rather than Case B; and results of SFRF 

gives better results in Case A but vice versa in Case B. 

For A.M. Case A gives better results than Case B although the difference is small; and SFRF gives 

better results in Case A but not valid in Case B. Furthermore, the apparent-mass matrix method 

(A.M.) gives much better results than the matrix inversion method (M.I.). 
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Fig.6– Force Identification(M.I.) 
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Fig.7– Force Identification(A.M.) 

Fig.8 –Frequency Averaged Error(M.I.) Fig.9 –Frequency Averaged Error(A.M.) 
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4. Discussion 

4.1 Condition Number 

We compare the condition numbers of the SFRF and FRF matrices. The condition number is the 

factor that evaluates the error propagation in the excitation force that have been identified. The 

condition number  H is calculated as follows. 

 
min

max




 H                                 (12) 

Where 
max  is a maximum singular value of the frequency response function matrix,

min  is a 

minimum singular value of the frequency response function matrix. The condition number  H  of 

the FRF and SFRF are shown in Fig.10. 

Fig.10 indicates that the condition number value of the SFRF smaller than the condition number 

value of the FRF in the case of Case A. Therefore, the input identification using the SFRF is superior 

to identification using the FRF in Case A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Hybrid Input Identification 

This paper investigates a new force identification method by using both strain measurement and 

acceleration measurement. In this paper, This new force identification method is called „hybrid input 

identification‟. In the hybrid input identification, strain is measured near the excitation point, and 

accelerations are measured at other points. It is abbreviated as Hmix in this paper. 

The numerical simulation is conducted in the same manner as in Chapter 3. Location of the 

response points and excitation points are summarized in Table 2. In Case A-1,the excitation force is 

identified using the FRF or the SFRF, in Case A-2,the excitation force is identified by the Hmix. 

The identified and measured force power spectra using matrix inversion method (M.I.) are shown in 

Fig.11. The identified and measured force power spectra using apparent-mass matrix method (A.M.) 

are shown in Fig.12. The frequency averaged error is shown in Fig.13. 
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These results indicate that the input identification using Hmix has a higher identification accuracy 

than the conventional method (FRF). In addition, the input identification accuracy using Hmix is 

almost the same as the input identification accuracy using SFRF. This is an effective method from a 

practical point of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

・For driving point FRF, frequency response functions are affected by higher-order modes. Especially, 

the strain response (SFRF) is more affected by higher-order modes than acceleration response 

(FRF). 

・The input identification accuracy is improved by adopting the driving point response. Especially, 

the input identification using strain response (SFRF) gives more accurate results than the 

acceleration response (FRF). 

・This paper investigated a hybrid input identification method: both acceleration and strain are used 

for input indentification; strain are measured for driving point response, and accelerations are 

measured for other responses. This method has a higher identification accuracy than the 

conventional method. 

・The identification accuracy of the hybrid input identification method is almost the same as the input 

identification accuracy using strain only response (SFRF).This is an effective method from a 

practical point of view. 

・The input identification accuracy of the apparent-mass matrix method (A.M.)is much higher than 

that of the matrix inversion method(M.I.). 

Fig.11– Force Identification(M.I.) Fig.12– Force Identification(A.M.) 
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Fig.13–Frequency Averaged Error 

Table2 Response and Excitation Conditions 

f1 f2

0.2 0.5 0.6 0.8

0.2 0.5 0.6 0.8

0.2 0.8 0.5 0.6

Case  Response Point[m]
Excitation Point[m]

A-1

Acceleration

0.5 0.6
Strain

A-2
Acceleration Strain

0.5 0.6
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