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ABSTRACT
Fluid-loaded nested cylindrical shells are modelled using a doubled-walled cylindrical shell structure closed at
each end by circular end plates and excited by a transverse force at one end. The effects of various influencing
factors on the radiated sound power are examined corresponding to non-concentricity of the cylindrical shells,
entrained fluid and rib connections in the annular space between the inner and outer shells. The doubled-walled
cylindrical shell is modelled using two different approaches to consider low and high frequencies. In the first
approach, a fully coupled finite element/boundary element model of the fluid-loaded nested cylindrical shells is
developed, whereby the finite element method is used to model the structure and the boundary element method
is used to model the entire fluid domain. The second approach uses an energy based method to consider the
high frequency range. A hybrid finite element/statistical energy analysis technique is developed whereby the
rigid components corresponding to the annular ribs and end plates are modelled using finite elements, while
the fluid and flexible shell structures are modelled using statistical energy analysis. Results obtained using the
deterministic and statistical numerical methods are compared.
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1. INTRODUCTION
Vibro-acoustic analyses of underwater structures may be conducted analytically (1, 2) and numerically (3)

as a coupled fluid-structure interaction problem. An underwater structure can be generally idealised as a
ring stiffened cylindrical shell subject to external water loading (4, 5). Many previous studies on fluid-loaded
cylindrical shells are concerned with single wall cylinders, with few studies on the vibro-acoustic characteristics
of double-walled cylinders. Lee and Kim (6) developed an analytical model of two concentric cylindrical
shells of infinite length based on Love’s equations. They showed that the double-walled shell with a large
air-gap provides good noise insulation. Fourier transform techniques were used by Skelton (7, 8) to predict
the scattered pressure from two concentric infinite cylindrical shells linked by rigid annular ribs. Balena et
al. (9) examined noise reduction of single and double-wall cylinders using a range of stiffeners. Below the
cylinder ring frequency, ring stiffeners can be modelled using a smeared approach. However this smeared
approach is not suitable at frequencies above the ring frequency. The entrained fluid in the annular space
between concentric submerged cylindrical shells has also been studied theoretically and experimentally (10,11)
where the inner and outer cylindrical shells are shown to be acoustically connected by the entrained fluid.

At high frequencies, structural wavelengths become very small thus requiring very small element sizes
in either a finite element or boundary element model. Deterministic methods are generally limited to the
low frequency range. Statistical energy analysis (SEA) (12) is an energy based method to overcome the
limitations of deterministic methods at higher frequencies. Using SEA for fluid-structure interaction problems,
the surrounding fluid is considered to be an additional subsystem in an SEA model. The validity of the SEA
equations is usually limited to high frequencies because of the underlying assumptions of high modal overlap
and weak coupling between structural subsystems. In the mid-frequency range, the dynamic behaviour of a
structure is the combination of long wavelength global modes and short wavelength local modes. An emerging
approach to predict mid frequency vibro-acoustic responses is the hybrid finite element-statistical energy
analysis (FE-SEA) method (13, 14).

In this paper, a coupled finite element/boundary element (FE/BE) method as well as a hybrid FE-SEA
method are used to numerically model fluid-loaded nested cylindrical shells subject to a transverse point
force. Numerical results in the low frequency range are initially presented to examine the effects of various
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influencing factors on the radiated sound power of the nested shells such as the entrained fluid in the annular
space between the inner and outer shells, non-concentricity of the shells, and annular ribs linking the inner
and outer cylindrical shells. A comparison of the radiated sound power obtained from the deterministic and
statistical methods is also presented.

2. MODEL DESCRIPTION
A schematic diagram of fluid-loaded nested cylindrical shells is shown in Figure 1. The system consists of

two concentric cylindrical shells of different thickness, connected together by circular end plates and annular
ribs. The inner cylindrical shell contains no fluid. The outer cylindrical shell is surrounded by a heavy fluid.
The annular space between the inner and outer cylindrical shells is filled with either a heavy or light fluid. The
inner and outer cylindrical shells have the same length L and are assumed to be thin-walled, that is, the shell
thickness h is much smaller than the mean shell radius R. The shells are closed at each end by circular end
plates. The shells are further connected with three evenly spaced annular plates. Both cylindrical shells are of
steel with material parameters denoted by Young’s modulus E, Poisson’s ratio υ and density ρ . The physical
parameters and material properties for the structure and fluid are listed in Table 1. In the analysis, the Young’s
modulus of the circular end plates and annular ribs is set as either 210 or 210,000 GPa. The more realistic
domed end closures in practical applications of fluid-loaded cylinders are much stiffer than the flat ends used
here. For this reason, the stiffness of the circular end plates has been increased to avoid the relatively flexible
end plates.
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Figure 1 – Schematic diagram of the concentric nested cylindrical shells

Table 1 – Physical parameters and material properties of the nested cylindrical shells

Parameter Inner shell Outer shell End plates Ribs Air Water

Radius R 1.25R 1.25R - - -
Thickness h 0.6h 0.1h, h h - -
Length L=12R L=12R - - - -
Density ρ (kg/m3) 7860 7860 7860 7860 1.204 1000
Sound speed c (m/s) 5960 5960 5960 5960 343 1500
Young’s modulus E (GPa) 210 210 210, 210E3 210, 210E3 - -
Poission’s ratio υ 0.3 0.3 0.3 0.3 - -

3. NUMERICAL MODEL
3.1 Finite element/boundary element model

A fully coupled FE/BE model is achieved by imposing a continuity condition of the fluid particle and
structural node normal velocity on the fluid-structure interface, as well as an equilibrium condition of the
acoustic pressure acting normally on the structural surface. Assuming a time harmonic dependence, the
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dynamic equilibrium equation for an elastic structure is given by (15)

Mq̈+Cq̇+Kq = f (1)

where M is the global mass matrix, C is the global damping matrix and K is the global stiffness matrix. q̈, q̇
and q are the nodal acceleration, velocity and displacement vectors, respectively. f is the external force vector.
Using the mode superposition principle, the finite element nodal point displacements can be obtained as

U(t) =
m

∑
i=1

Φixi(t) (2)

where U is the vector of nodal point displacements, Φi is the ith modeshape vector, xi is the ith mode
displacement, m is the total number of modes, and t is the time variable. Structural damping was incorporated
into the numerical model using proportional damping. The proportional damping model expresses the damping
matrix as a linear function of the mass and stiffness matrices as follows (16)

C = αM+βK (3)

where α and β are real scalars. In this work, the effect of varation in damping of the outer cylindrical shell on
the radiated sound power was conducted by setting pre-determined constants of α and β in equation (3). The
proportional damping model considers that the structural damping ratio is a linear superposition of the mass
and stiffness proportional damping effects. The proportional damping ratio ξi for the ith mode is calculated
as (17)

ξi =
α

2ω
+

βω

2
(4)

where ω is the radian frequency.
The indirect boundary element method was used to calculate the acoustic field as it simultaneously

calculates the responses of the external fluid and the entrained fluid between the cylindrical shells. The acoustic
pressure jumps and structural displacements of a coupled FE/BE model are obtained by (18)[

K−ω2M CT
g

ρω2Cg H

][
us

p j

]
=

[
fs

f f

]
(5)

where fs and f f are respectively the nodal structural forces and forces due to fluid loading acting on the surface
of the structure, us is the nodal displacement of the structure, p j is the vector of nodal values of acoustic
pressure jumps, Cg is the geometrical coupling matrix and [·]T denotes the transpose matrix operator. H is the
frequency dependent indirect boundary element influence matrix.

The nested cylindrical shells were initially modelled with 3584 QUAD 8 shell elements (32 elements in the
circumferential direction and 45 elements in the longitudinal direction) and solved using MSC/Patran/Nastran
to obtain the FE mesh and structural modes of the nested cylindrical shells. A proportional damping ratio of

Figure 2 – FE/BE model of the nested cylindrical shells with annular ribs
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0.02 was applied to the structural modes of the nested cylindrical shells. A transverse point force was applied
at the junction between one end plate and the inner cylindrical shell, as shown in Figure 2. The FE mesh and
structural modes were then imported into SYSNOISE to calculate the radiated sound power. The FE structural
model and the indirect BEM acoustic model were linked together via a fluid-structure interaction surface
and solved from 0.5 to 80 Hz in steps of 0.5 Hz. In the analysis, only the fluid-structure interaction surface
of the inner and outer cylindrical shells was considered as the transverse point force predominantly excites
the bending modes of the shells. As shown in Figure 1, the fluid loading is applied to both sides of the outer
shell which makes the direct BEM unsuitable; the indirect BEM was used. Therefore, no sound radiation from
the circular end plates was considered and the end plates only act as transmission paths of vibrational energy
between the inner and outer shells. Once the acoustic pressure and normal particle velocity on the radiating
surface are known, the total radiated sound power was numerically obtained as (19)

Πnum =
1
2

Re


∫
Γ

pv∗dΓ

 (6)

where p is the acoustic pressure of the fluid, v is the fluid particle velocity on the wet surface of the structure
and Γ is the fluid-structure interface surface area. [·]* denotes the conjugate complex and Re denotes the real
part of the complex value. In the proceeding results, the reference sound power is 10−12 W.

3.2 Hybrid finite element/statistical energy analysis model
A detailed formulation of the hybrid FE-SEA methodology can be found in Refs. (13, 14). In what follows,

a brief introduction on the fundamental theory is presented. The key idea in the hybrid FE-SEA method is
that in any complex mechanical system, there exists a middle frequency range in which some subsystems of
low modal density will exhibit modal behavior while other subsystems of high modal density exhibit diffuse
behaviour. Therefore, the complex mechanical system is represented as an assembly of deterministic FE
components known as the master system and an assembly of SEA subsystems with uncertain properties. The
power balance equation for subsystem i is given by (12)

Pi = ωηiEi +ω ∑
j 6=i

ηi jni

(
Ei

ni
−

E j

n j

)
(7)

where ni , ηi are respectively the modal density and loss factor of subsystem i. ηi j is the coupling loss factor
between subsystems i and j. The input power Pi and subsystem energies Ei, E j are averaged over ensemble
properties or frequency. To couple the FE and SEA methods, the hybrid FE-SEA equation can be derived
as (13, 14)

Pi +Pext
in,i = ω(ηi +ηd,i)Ei +ω ∑

j 6=i
ηi jni

(
Ei

ni
−

E j

n j

)
(8)

Compared with the standard SEA equation given by equation (7), the hybrid FE-SEA equation has two
additional terms: (i) a contribution Pext

in,i to the input power arising from forces applied directly to the master
system; (ii) the additional loss factor ηd,i of the master system. These two additional terms can be expressed
analytically as a function of the total dynamic stiffness matrix and the cross-spectral density matrix of the
external load applied to the master system.

The nested cylindrical shells with annular ribs were modelled using the Hybrid FE-SEA module in the
VA-One software (20), as shown in Figure 3. The rigid end plates and annular ribs are of low modal density
and therefore modelled as FE subsystems while the inner and outer cylindrical shells were modelled as SEA
subsystems. The water was modelled as a semi-infinite-fluid (SIF) subsystem. The fluid load was applied to
the outer surface of the structure by connecting the SIF subsystem to the SEA subsystems of the inner and
outer cylindrical shells and the circular end plates. A transverse point force excitation was applied at the same
location as in Figure 2.

4. NUMERICAL RESULTS
In the numerical results, the nested cylindrical shells are surrounded by heavy fluid. Heavy fluid is also

considered in the annular space between the inner and outer shells in all cases except for Figure 4, which
compares results for the case of entrained water with that of entrained air. To simulate strong coupling between
the inner and outer shells, the Young’s modulus of the circular end plates was increased to 210E3 GPa,
corresponding to a value 1000 times greater than the normal value for steel. The annular ribs are only included
in the models for the results presented in Figures 9 and 13.
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4.1 Entrained Fluid Loading
The entrained fluid connects the inner and outer shells of the nested cylindrical shells acoustically due to

the fluid-structure coupling. The inner and outer shells are mechanically connected by the rigid circular plates
at each end. The radiated sound power from the nested cylindrical shells entrained with a heavy or light fluid is
presented in Figure 4. The resonant peaks in the radiated sound power correspond to successive circumferential
bending modes of the cylindrical shells. Comparison of the radiated sound power for the two cases of entrained
fluid shows that the fluid in the annular space between the two cylindrical shells has a significant effect on
the resonant peaks. For the case of entrained water, there is a decrease in the resonant frequencies due to the
added dynamic mass of entrained water loading. A reduction in the radiated sound power at the first three
bending modes is attributed to additional radiation damping provided to the acoustic radiation modes of the
nested cylindrical shells by the entrained water. For the case of entrained air, an increase in modal density with
increasing frequency is observed as a greater number of short wavelength, high order local modes of the inner
and outer shells are excited.

4.2 Proportional Damping
The effect of structural damping on the radiated sound power from the nested cylindrical shells was

examined by varying the proportional damping coefficients corresponding to the mass damping coefficient
α and the stiffness damping coefficient β in equation (3). Using the procedure described in ref. (17), the
proportional damping coefficients were calculated for two values of the frequency-dependent proportional
damping ratios using equation (4), at frequencies of 5 and 80 Hz which covers the frequency range for the
results in this work. The two selected damping ratios and corresponding calculated damping coefficients are
listed in Table 2. Figure 5 shows that the resonant peaks in the radiated sound power are reduced with an
increase in damping. Little reduction in the peak radiated sound power occurs below 20 Hz. The effect of
damping on the peak radiated sound power increases with increasing frequency.

Table 2 – Proportional damping ratios and coefficients

Damping ratio α β

0.02 1.18 7.49E-5
0.04 2.37 1.50E-4

4.3 Non-Concentricity
The influence of non-concentricity of the cylindrical shells on the radiated sound power is examined by

varying the non-concentricity parameter d, shown in Figure 6. From Figure 7, it is observed that the influence
of non-concentricity is essentially negligible if d/R is small. This finding is also demonstrated from the
analytical solution of Shaw (21).

4.4 Annular Ribs
In Figure 8, the annular space between the inner and outer shells is divided into four compartments by

three evenly spaced annular ribs. The physical parameters of the annular ribs are listed in Table 1. Whilst the
FEM model was modified to include the annular ribs, the same BEM model was used for the calculation of the
radiated sound power for both the ribbed and unribbed nested cylindrical shells, corresponding to the BEM
model for the unribbed shells.

Figure 3 – Hybrid FE-SEA model of the nested cylindrical shells with annular ribs
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Figure 4 – Radiated sound power for different
entrained fluid in the annular space
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Figure 5 – Radiated sound power for different
proportional damping ratios
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Figure 6 – Definition of the non-concentricity
parameter in the non-concentric nested
cylindrical shells
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Figure 7 – Radiated sound power from the
concentric and non-concentric nested cylindrical
shells

Figure 8 – Structural and acoustic mesh of the
nested cylindrical shells with annular ribs
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Figure 9 – Radiated sound power from the nested
cylindrical shells with and without annular ribs
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Figure 9 compares the radiated sound power for unribbed nested cylindrical shells and the shells with
either flexible or rigid annular ribs. It is observed that the resonant frequencies of the shell bending modes are
increased by adding annular ribs to the nested cylindrical shells, which is attributed to the increased bending
stiffness of the cylindrical shells. The effect of rigid annular ribs compared to flexible ribs on the radiated sound
power is not significant. Hence, the stiffness of the annular ribs does not significantly affect the vibrational
characteristics of the cylindrical shells.

4.5 Circular End Plates
The effect of thickness and stiffness of the circular end plates on the radiated sound power is examined as

follows. Figures 10 and 11 respectively present the radiated sound power of the nested cylindrical shells closed
with circular end plates with varying thickness and stiffness. In Figure 10, the Young’s modulus of the rigid
end plates is kept constant at 210E3 GPa and the thickness of the end plates is reduced from 40 to 4 mm. In
Figure 11, the thickness of the end plates is kept constant at 40 mm and the Young’s modulus is reduced from
210E3 to 210 GPa. If the thickness of the end plates is negligible or if the stiffness of the end plates is very
low, the inner and outer shells vibrate independently and are only acoustically connected by the entrained fluid
in the annular space. Increasing the flexibility of the end plates by either reducing the thickness or elasticity
results in an increase in radiated sound power. This is attributed to the fact that the cylindrical shells are less
constrained by the rigidity of the end plates and as such are able to vibrate more freely, resulting in greater
structure-borne radiated sound.
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Figure 10 – Radiated sound power from the
nested cylindrical shells with varying end plate
thickness
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Figure 11 – Radiated sound power from the
nested cylindrical shells with varying end plate
stiffness

4.6 Deterministic and Statistical Models
Figures 12 and 13 present the radiated sound power from the nested cylindrical shells with and without

rigid annular ribs using both coupled FE/BE and hybrid FE-SEA methods. Below 80 Hz, the discrete peaks in
the coupled FE/BE results correspond to the bending modes of the cylindrical shells which cannot be predicted
by the hybrid FE-SEA models due to the inherent averaging process of the modal energy in the frequency
domain. At lower frequencies, the radiated sound power predicted by the hybrid FE-SEA models is considered
to be less accurate than the radiated sound power predicted deterministically as there is not a sufficient number
of structural modes. Using coupled FE/BE, the mesh size should be proportional to the frequency of the
problem in order to have a more accurate solution. For frequencies above 80 Hz, the mesh size of coupled
FE/BE models in this work was increased from 3584 to 7124 elements (48 elements in the circumferential
direction and 90 elements in the longitudinal direction), which is the maximum model size possible given
the available computational resources. It is observed that the difference in the sound power level between the
coarse and finer mesh is not very significant in the frequency range between 80 and 120 Hz which indicates
that the mesh discretisation may be sufficient up to 250 Hz. The maximum radiated sound power occurs close
to the ring frequency of the nested cylindrical shells. Reasonable agreement in the trend for the radiated sound
power is observed between the deterministic and statistical numerical techniques at the higher frequencies for
increased modal density. Due to the limited number of elements in the coupled FE/BE models, the validity of
the deterministic results generated by the coupled FE/BE models at higher frequencies is uncertain.
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5. CONCLUSIONS
Numerical models for nested cylindrical shells consisting of two cylindrical shells submerged in water

and filled with water or air in the annular space between the shells have been presented. The cylinders are
closed at each end by circular end plates. A fully coupled finite element/boundary element model of the
fluid-loaded cylindrical shells was developed using MSC/Patran/Nastran and SYSNOISE. Several influencing
factors corresponding to flexibility of the end plates, annular ribs coupling the cylindrical shells, heavy or light
entrained fluid and non-concentricity of the cylindrical shells were investigated. A hybrid FE-SEA model of
the nested cylindrical shells was also developed to examine the radiated sound power at higher frequencies. A
reasonable agreement in the trend for the radiated sound power obtained deterministically and statistically was
observed.
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nested cylindrical shells without annular ribs
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