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ABSTRACT 

This study concerns an eigenvalue problem of a vibro-acoustic coupling system. In the conventional method, 
the dynamics of a vibro-acoustic coupling system is calculated with modal coupling methodology which uses 
eigenfunctions of a rigid-walled cavity. Therefore, particle velocity on the surface of a panel is always 
calculated as zero, while it should be coincident with the velocity of the panel. To overcome the problem, this 
paper presents a new methodology for deriving accurate eigen-pairs of a vibro-acoustic coupling system. 
First, a transfer matrix is introduced which can describe the characteristics of the sound field. This is followed 
by the derivation of the sound pressure on the coupled rectangular panel. Then, the vibrational velocity of the 
panel is derived with the sound pressure being used as the input. Furthermore, the eigenvalue problem is 
formulated based on the equations of vibration and sound field. Finally, the numerical simulation is carried 
out, demonstrating the validity of the proposed method. 
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1. INTRODUCTION 
Cabin in cars and airplanes is essentially a vibro-acoustic coupling system in which structural 

vibration and sound field in the cabin are affected each other. For example, disturbance force from 
an engine excites the cabin structure, and then the structural vibration radiates the noise into the 
enclosed field. Furthermore, the noise inside the cabin excites the cabin structure, and thus the 
coupled system is produced. Since recent mechanical systems tend to be lightweight and flexible due 
to the realization of high energy efficiency, theoretical understanding of the coupling phenomena is 
important. 

Reviewing the past research on the theoretical analysis of a vibro-acoustic coupling system, the 
mainstream method is based on the modal coupling method. However, this method utilizes the 
eigenfunctions of a rigid-walled cavity for describing the sound field in the coupled system. 
Therefore, particle velocity on the surface of a flexible structure is always calculated as zero, while it 
should be coincident with the velocity of the structure. It is obvious that the modal coupling method 
has a limitation in describing the whole dynamics of the coupling system. To overcome the problem 
described above, the authors presented how to derive the eigen-pairs of a coupled rectangular cavity 
under the matching condition between the particle velocity of the air and the structural velocity, and 
clarified its validity from a numerical and experimental point of view. However, in this methodology, 
vibrational velocity of a flexible panel is treated as the boundary condition of the sound field (that is, 
there is no coupling term in the right-hand side of the wave equation). On the other hand, it is 
possible to regard the structural vibration as the input to the sound field. Although the 
aforementioned modal coupling method is based on this concept, this method cannot realize the 
precise model of a coupling system as pointed out above. 

This study presents the alternative approach for deriving the exact eigen-pairs (that is, 
eigenfunctions and eigenvalules) of a coupling system which treats vibrational velocity of a flexible 
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panel as input to the sound field. First, a transfer matrix is introduced which can describe the 
characteristics of the sound field. This is followed by the derivation of the sound pressure on the 
coupled rectangular panel. Then, the vibrational velocity of the panel is derived with the sound 
pressure being used as the input. Furthermore, the eigenvalue problem is formulated based on the 
equations of vibration and sound field. Finally, the numerical simulation is carried out, 
demonstrating the validity of the proposed method. 

2. FORMURATION OF AN EIGENVALUE PROBLEM 
This paper treats the coupled rectangular cavity consisting of one flexible panel and five rigid 

walls. The schematic diagram of the coupled cavity is illustrated in Fig. 1. Assuming the harmonic 
vibration at an angular frequency w, the wave equation with respect to the sound pressure p is 
written as 

2 2( , , ) ( , , ) j ( , ) ( )a a zp x y z k p x y z v x y z Lωρ δ∇ + = − , (1)

where 2
a∇  is the Laplacian, k is wave number, δ is the Dirac’s delta function, v is the vibration velocity of 

the panel. The solution to the inhomogeneous of Eq. (1) is written as 
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With the same manner, it is possible to derive the particle velocity for the z direction, and then the state 
vector of the enclosed sound field is defined as 
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Here , ( )z lm zz is the state vector of the (l, m) mode group which is given by 
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Using the matrices listed above, the transfer matrix of the (l, m) mode group is defined, and the 
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Figure 1 – Schematic diagram of a coupled rectangular cavity 
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relationship between the state vectors at node i and i-1 is given by 
1

, 1 , , 1 1 ,( )i z lm lm lm z lm i z lm i i lm i z lml −
− − −= =z K D K z T z , (7)

where ,i z lmz  and 1 ,i z lm− z  are the state vectors at node i and i-1, respectively, and , 1i i lm− T  is the 

transfer matrix between the two nodes.  
Next, defining the left and right boundaries as nodes 1 and 2, respectively, the state vector of the 

rigid-walled cavity is written as 
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where , 1 ,i i op lmt−  denotes the oth row and pth column variable in the transfer matrix , 1i i lm− T . 

Furthermore, vlm is the effect of the panel vibration to the (l, m) mode group which is written as 

cos cos ( , )lm lm S x y

l mv e x yv x y dS
L L
π π=  , (9)

where elm is the constant determined by the modal indices. It should be noted that the second row in 
the left-hand side of Eq. (8) is zero. This indicates that in the uncoupled state, the boundary 
condition is a rigid wall. Developing Eq. (8), the sound pressure of the (l, m) mode group at the node 
1 is obtained as 

1 ,z lm lm lmp vλ= , (10)

where 
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Next, a general solution of vibration velocity of a flexible panel is written as 
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where bij denotes the modal coefficient of the (i, j) mode of the panel. Substituting the above 
equation into Eq. (9), we have 
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where 
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Considering all modes, Eq. (10) is rewritten in the vector form as 
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(15)

Next, consider the modal coefficient of the vibration velocity written in Eq. (12). This coefficient 
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is generally described as 

( )2 2

j
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b g
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ω ω
= −

−
, (16)

where Ms is quarter mass of the panel, ijω  is the (i, j) modal angular frequency. Furthermore, fij and 

gij are defined as 
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Then, substituting the above equation into Eq. (2) yields 
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where 
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Therefore, the modal coefficient of the panel is described in the vector form as 
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From Eqs. (15) and (19), an eigenvalue problem of the coupled cavity is formulated as 

=Ax 0 , (21)

where 

T
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A x
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Therefore, the eigenfrequencies of the coupled cavity are calculated as non-trivial solutions of 
Eq.(21), and the corresponding eigenfunctions are obtained from the eigenvectors that are also 
calculated from Eq.(21). 

3. NUMERICAL SIMULATION 
Table 1 shows the physical parameters of the coupled rectangular cavity used in this paper. Based 

on those parameters, the modal frequencies before and after coupling are calculated, being listed in 
table 2. It should be noted that there are no notations of modal indices for the modal frequencies of 
the coupled cavity. This is because it is impossible to express the coupled modes as (l, m, n) or (i, j) 
modes. Before coupling, there are two acoustical modes in the first nine modes. Those modes have 
the same coupling characteristics, that is, those are coupled only with odd-odd vibration modes. 
Thus, the (1, 1) mode of the panel is coupled with the (0, 0, 0) mode of the cavity, and the modal 
frequency is shifted from 73.2 Hz to 76.2 Hz. The reason this shift is for increment is because the (0, 
0, 0) mode acts as an air spring. In contrast, the (1, 2) modal frequency of the panel is slightly 

 

Table 1 – Physical parameters of the coupled rectangular cavity 

Dimensions Air density Speed of sound Youg's modulus

0.18 m x 0.38 m x 0.58 m 1.21 kg/m3 340 m/s 2.06x109 Pa 

Panel density Poisson's ratio Thicness of the panel 

7900 kg/m3 0.29 0.008 m 

 



Inter-noise 2014  Page 5 of 6 

Inter-noise 2014  Page 5 of 6 

reduced from 113.4 Hz to 112.2 Hz. This vibration mode is mainly coupled with the (0, 1, 0) mode of 
the cavity at 447.4 Hz which is not listed in table 2. In this case, the modal frequency before 
coupling, 112.2 Hz, is lower than the cut-on frequency of the (0, 1) mode groups of the cavity, and 
hence the coupled mode becomes a evanescent mode.  

Next, the vibrational velocity distribution is compared with the particle velocity distribution. 
Figure 2 shows the normalized mode shape of vibrational velocity and particle velocity on the panel 
at the first modal frequency. As shown in the figure, the both distributions are fairly coincident. 
Therefore, it can be concluded that the proposed method overcome the problem of the conventional 
modal coupling method. Figure 3 shows the normalized mode shape of vibrational velocity and 
particle velocity on the panel at the second modal frequency. In this case, the particle velocity along 
the perimeters of the panel is not close to zero, as compared to the case of the first mode. This result 

 

Table 2 – Eigenpairs of the coupled rectangular cavity before and after coupling 

  in vacuo coupled 

Mode number 
Modal indices 

(l, m, n) or (i, j) 

Frequency 

Hz 

Frequency 

Hz 

1 (0, 0, 0) 0 76.2 

2 (1, 1) 73.2 112.2 

3 (1, 2) 113.4 179.6 

4 (1, 3) 180.4 250.9 

5 (2, 1) 252.4 273.4 

6 (1, 4) 274.2 291 

7 (2, 2) 292.6 295.8 

8 (0, 0, 1) 293.1 358.3 

9 (2, 3) 359.6 393.6 
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Figure 2 – Normalized mode shape of vibrational velocity and particle velocity on the panel at the first 

modal frequency 
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indicates that the number of the cavity mode groups is not sufficient for describing the sound field 
around the flexible panel, that is, a number of the cavity mode groups are required in order that 
vibration distribution described by sine functions is coincident with particle velocity distribution 
described by cosine functions. 

4. CONCLUSION 
This paper has discussed the alternative approach for deriving the eigenparis of a coupled 

rectangular cavity. First, a transfer matrix method for an enclosed sound field is introduced, which 
can treats vibration velocity of a flexible panel as input to a cavity. This is followed by the derivation 
of sound pressure on a flexible panel. Next, vibration velocity distribution of a flexible panel is 
derived by regarding sound pressure as input to the panel. Furthermore, using the two equations of 
the sound pressure and vibration velocity, an eigenvalue problem of a couple cavity is formulated. 
Finally, numerical simulations are carried out, demonstrating that the proposed method overcomes 
the problem of the conventional modal coupling method. 

ACKNOWLEDGEMENTS 
This study was made possible by Grant-in-Aid for Scientific Research (No. 25249022 and 

25420192) from the Japan Society for the Promotion of Science. The authors wish to express their 
gratitude for this support. 

REFERENCES 
1. Pan, J, Bies, DA. The effect of fluid-structural coupling on sound waves in an enclosure—Theoretical 

part. J Acoust Soc Am. 1990;87:691-707. 
2. Tanaka, N, Takara, Y, Iwamoto, H. Eigenpairs of a coupled rectangular cavity and its fundamental 

properties. J Acoust Soc Am. 2012;131:1910-1921. 
3. Iwamoto, H, Tanaka, N, Sanada, A. Noise reduction in a rectangular enclosure using active wave control. 

J Enviro Eng. 2011;6:107-118. 
 
. 
 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0
0.050.1

0.150.2
0.25

0.3
0.35

0

0.2

0.4

0.6

0.8

1

x  [m]

Vibrational velocity

y  [m]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0
0.050.1

0.150.2
0.25

0.3
0.35

0

0.2

0.4

0.6

0.8

1

x  [m]

Particle velocity

y  [m]

 

Figure 3 – Normalized mode shape of vibrational velocity and particle velocity on the panel at the second 

modal frequency 


