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ABSTRACT 

Lots of dynamic systems in science and engineering can be simplified as the elastically connected 
multiple-beams, such as carbon nano tubes and pipes. However, in the majority of current study, just 
translational spring is considered on beam coupling interfaces. As we know that, not only the 
translation but also the rotational deformation will occur during beam bending problem. In this work, 
general beam vibration model is established, in which both two types of translational and rotational 
springs are taken into account for the coupling interface and both ends. An improved Fourier series is 
employed for the vibration displacement description for each beam, in which the additional terms are 
introduced to meet the continuity requirement when the constructed expression is used as the 
admissible functions. Modal parameters can be determined through the application of Rayleigh-Ritz 
procedure to the system energy formulation. The current model is then validated through the 
comparison with those from other analytical approach in open literature. The results show that the 
current model can made efficient and accurate prediction on the modal property of such complex beam 
system. The effect of rotational spring on the modal characteristics is also emphasized. 

Keywords: Elastically Connected Multiple-Beams, General Boundary Conditions, Improved 
Fourier Series Method I-INCE Classification of Subjects Number(s): 42 

1. INTRODUCTION 
Fundamental one- and two-dimensional simple continuous systems, such as a string, beam, 

membrane, plate and shell are usually used for modeling real mechanical structure. Some interesting 
and technically important complex continuous systems can be obtained by connecting these simple 
systems by constraining springs of different types (1). Elastically restrained multiple-beam system 
has attracted a lot of research interest from the structural dynamics community. 

Seelig and Hoppmann (2) presented the development and solution of the differential equations of 
motion of a system of n elastically connected parallel beams, in which the particular case of a 
two-beam system was analyzed in detail. Vibration experiments were also performed to validate the 
theoretical formulation. Kessel (3) obtained the resonance conditions for an elastically connected 
double-beam system in which one of the members is subjected to a moving point load that oscillates 
longitudinally along the beam about a fixed point. On the basis of Timoshenko beam theory, Rao (4) 
solved the differential equation governing the flexural vibration of systems of elastically connected 
parallel bars with the effects of rotary inertia and shear deformation considered. The natural 
frequencies and mode shapes of particular three- and two-beam systems are obtained. Hv etal (5) 
presented an exact model for the vibration of a double-beam system subject to harmonic excitation, 
in which a distributed spring k and dashpot c in parallel between the two beams are introduced to 
represent a simplified model of viscoelastic material. Oniszczuk (6) conducted the free vibration 
analysis of two parallel simply supported beams continuously joined by a Winkler elastic layer, 
namely the uniform translational coupling spring. Li and Hua (7) used the dynamic stiffness method 
to analyze the free vibration characteristics of a three-beam system with the coupling springs and 
dashpots on the common interface. Kelly and Srinivas (8) considered the modal analysis of a set of 
elastically connected axially loaded Euler-Bernoulli beams. Rosa and Lippiello (9) established 
prediction model for the free vibrations of parallel double-beams joined by a Winkler-type 
homogeneous elastic foundation, in which the differential quadrature method (DQM) is used for 
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solving two partial differential equations system.  
From the above literature, it can be seen that much work has been done for the vibration analysis 

of elastically connected multiple-beams. However, in the existing studies, just the translational 
restraining spring is considered between the coupling interface. From the engineering standpoint, 
there are two degree freedom at each field point of interface, namely translation and rotation. 
Motivated by the such gap in the current research, the full coupling with translational and rotational 
springs will be taken into account. 

In this work, free vibration analysis of elastically connected beam system is performed, on the 
coupling interface, two types of coupling spring are introduced to simulate the mechanical 
interaction between beam components. On each end of beam structure, both translational and 
rotational supporting springs are considered, then arbitrary boundary condition of each beam can be 
easily obtained. Energy principle instead of differential equations is employed for the dynamic 
description of such coupled structure. In order to ensure the convergence and accuracy of the results 
from subsequent Rayleigh-Ritz procedure, an improved Fourier series method (12) is chosen for the 
construction of admissible functions, in which the supplementary trigonometric functions are 
introduced to the standard Fourier cosine series to remove all the spatial differentiation 
discontinuities in the whole solving interval. Then, numerical results are given to demonstrate the 
effectiveness of the current model. 

 

2. MATHEMATICAL FORMULATIONS 

2.1 Model illustration 

Consider an elastically connected multiple-beam system, as illustrated in Fig. 1. Several beam 
member with arbitrary boundary conditions are coupled with other through the elastic restraints on 
the coupling interfaces. Such mechanical interaction is represented using two types of restraining 
springs, namely translational and rotational springs. The coordinate systems used in the analysis are 
also shown, with the equal beam length as L. Any boundary condition can be easily obtained by 
setting the relevant restraining spring stiffnesses. For the beam vibration, there are two freedom 
degrees at each field point, a full coupling restraints should include the translational and rotational 
ones. The familiar Winkler type of elastic interface can be readily derived by setting the coefficients 
of rotational springs into zero. 

 
Figure 1 Elastically connected multiple-beams with arbitrary boundary conditions 

2.2 Dynamic behavior description and solution 

For the coupled beam structure as shown in Fig.1, its dynamic behavior is governed by the partial 
differential equation as well as the boundary and coupling conditions. The solution found in this way 
is called the strong form. On the other hand, the system can be also described from the viewpoint of 
energy, with its corresponding solution named as the weak form. When the admissible functions are 
constructed smooth enough, these two solutions are equivalent. Here, the energy formulation is used 
for the description of system dynamic behavior. The Lagrangian for such coupling beam system can 
be written as 
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in which, L is the Lagrangian, V and T are the total potential energy and kinetic energy; iV is the 

potential energy associated with the ith beam member, , 1i i
couplingV  is the potential energy stored in 

interface coupling springs between the ith and i+1th beam member, Ti is the kinetic energy due to the 
ith vibrating beam.  

For the ith beam member with elastically restrained edges, the potential energy Vi is 
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where w(x) is the transverse vibration displacement field function, k0 and K0 are respectively the 
stiffness coefficients for the translational and rotational springs at the end x=0, and similar meaning 
can be deduced for the right end of x=L. The subscript i means that this variable is associated with 
the ith beam member. 

The total kinetic energy of the ith beam structure is 
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here,  is the radian frequency, i and Si are respectively the mass density and cross section area of 
the ith beam member. 

The coupling potential energy between the beam interface can be written as 
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in which, , 1i i
ck  and , 1i i

cK  are respectively the translational and rotational coupling spring stiffness 

between the ith and i+1th beam member. 
Once the system Lagrangian is obtained, the other thing is to construct the appropriate admissible 

function. The continuity of the assumed functions has significant effect on the final convergence and 
accuracy. Here, the improved Fourier series method is employed for this purpose, in which the 
additional functions are introduced to the standard Fourier series to remove all the discontinuities 
associated with the spatial differentiation of the displacement field functions. For each beam 
structure, its flexural vibrating displacement function is expanded as 
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It can be easily proven that the current constructed trigonometric function can satisfy the 
displacement and its higher order differentiation continuity requirement in the interval [0, L]. It 
should be pointed out that the choice of the supplementary functions is not unique, while the 
appropriate form will be helpful for simplifying the subsequent mathematical formulations.  

Substituting the admissible function Eq.(5) into the elastically connected multiple-beam system 
Lagrangian Eq. (1-4), minimizing it with respect to all the unknown Fourier series coefficients and 
truncating the Fourier series into finite number n=N, one will obtain the system characteristic 
equation in matrix form as follows: 

 2 K M A 0                        (10) 

where K and M are the stiffness and mass matrix for the elastically connected multiple-beam system, 
A is the unknown Fourier series coefficient vector. Through solving this standard system eigenvalue 
problem, the associated natural frequency and mode shapes can be easily obtained.  

3. NUMERICAL EXAMPLES AND DISCUSSIONS 
In this section, several numerical examples will be given to demonstrate the effectiveness of the 

current elastically connected multiple beams with arbitrary boundary conditions. As pointed out in 
the previous section, all the classical boundary condition, such as simply supported, free and 
clamped, can be easily obtained by setting the relevant spring stiffness.  

The first example is about a double-beam system, which has been analyzed by other approaches in 
the literature. The model parameter is kept the same as those in the Ref. (11), namely, E1I1=4106Nm2, 
E2I2=2 E1I1, 1A1=100kg/m, 2A2=21A1, L=10m, k=1105N/m2. From the comparison tabulated in 
Table 1, it can be observed that the current results can agree well with those from other approaches.  

 
Table 1 – The first six natural frequencies n for the double-beams with 

different boundary conditions (k=1105N/m2) 
 

Boundary conditions Natural frequencies n 

Beam 1 Beam 2 1 2 3 4 5 6 

S-S S-S 19.7392 43.4699 78.9564 87.9439 177.6508 181.8239 

19.7392a 43.4699 78.9568 87.9442 177.6529 181.8256 

C-C C-C 44.7451 59.1790 123.3403 129.2791 241.7925 244.8775 

44.7466a 59.1799 123.3456 129.2832 241.8068 244.8888 

C-F C-F 7.0320 39.3630 44.0683 58.6688 123.3918 129.3277 

7.0320a 39.3630 44.0690 58.6692 123.3944 129.3297 

S-S C-F 17.42560 37.1969 51.5913 84.9902 125.5455 180.4213 

18.2717a 34.3952 48.6778 100.4167 106.7741 208.6526 

20.7822b 40.4643 56.9722 84.8796 127.3664 179.9064 

S-S C-C 32.4592 53.2683 84.7241 125.5714 180.3970 242.8573 

30.8364a 49.5064 99.9297 107.1725 208.4953 212.0620 

30.3365b 58.8628 84.3266 127.3916 179.8562 242.7132 

C-C C-F 21.6177 46.0563 58.2705 123.7272 128.9877 241.9219 

21.6179a 46.0571 58.2712 123.7303 128.9907 241.9303 

  aResults from Ref. (11). 
   bResults from FEM with 500 elements. 
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Table 2 – The first six natural frequencies n for the double-beams with different boundary conditions 

(K=1105N/m2) 

Boundary conditions Natural frequencies n 

Beam 1 Beam 2 1 2 3 4 5 6 

S-S S-S 19.7392 23.1879 78.9564 82.6214 177.6508 181.3623 

19.7298a 24.2336 78.8479 83.7046 177.1544 182.0741 

C-C C-C 44.7451 46.7575 123.3403 126.1081 241.7925 244.8432 

44.6841a 47.3381 122.9808 126.6313 240.5769 244.5856 

C-F C-F 7.0319 10.6573 44.0683 49.2300 123.3918 128.0019 

7.0296a 11.5366 44.0181 50.7681 123.0876 129.1886 

S-S C-F 8.4523 21.9219 45.9457 81.3350 124.9995 180.0818 

9.6120a 21.7731 47.6781 81.1536 126.2732 179.5295 

S-S C-C 22.0301 45.4556 81.3663 124.3000 180.0971 242.8361 

21.9660a 46.0872 81.2165 124.8783 179.5546 242.6378 

C-C C-F 8.4784 44.6111 47.3107 123.5349 126.5879 241.9258 

9.5610a 44.7382 48.7537 123.2447 127.7120 240.8219 

  aResults from FEM with 500 elements. 
 
Listed in Table 2 are the natural frequencies of two-beams with different boundary condition, in 

which the translational coupling spring is removed, and the rotational coupling spring is applied on 
the interface with the same stiffness value as K=1105N/m2. Since there is little data that can be 
found in literature for comparison, the finite element analysis with 500 elements is also used to 
obtain relevant data for validation. Again, it can be found that the comparison is satisfactory. From 
these two Tables, it can be also observed that for different boundary conditions, the trend is different. 
For the symmetric end condition, both two coupling springs lead to the similar results, such S-S and 
C-C, while for other cases, the two coupling stiffness yields different natural frequencies. This also 
implies that for the elastically connected beam system, the coupling type on the interface should be 
specified. The corresponding mode shapes for the double-beam system with C-C and C-F boundary 
conditions under such rotational interface restraints are also plotted in Fig. 2.  
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Figure. 2 Mode shapes of C-C and C-F double beam system, with rotational elastic restraint as 
K=1105N/m2 

 
  The second example is about a three-beams coupling system, with the parameters as: 
E1I1=E2I2=E3I3=4106 Nm2, 1A1=2A2=3A3=100 kg/m, k1=k2=1105N/m2, L=10. In order to compare the 
results with those given in Ref. (11), the above parameter is used, and the rotational restraining stiffness is 
set into zero. From the Table 3, it can be seen that the agreement is very good for this three-beams with the 
Winkler elastic interface.  

 
Table 3 – The first six natural frequencies n for the three-beams with various classical boundary 

conditions (k12= k23=1105N/m2, K12=K23=0) 

Boundary conditions Natural frequencies n 

Beam 1 Beam 2 Beam 3 1 2 3 4 5 6 

S-S S-S S-S 19.7392 

19.7392a

37.2778 

37.2778 

58.2206 

58.2206 

78.9566 

78.9568 

85.0538 

85.0540 

96.0944 

96.0947 

S-S C-C S-S 28.0017 37.2778 67.8610 83.9412 85.0538 131.9086

C-C C-C C-C 44.7457 

44.7466a

54.7921 

54.7928 

70.7261 

70.7266 

123.3425

123.3456

127.3317 

127.3348 

134.9569

134.9598
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C-C C-C C-F 29.7313 46.9018 54.4353 70.2139 123.7098 127.3594

C-C S-S C-F 25.0730 

25.0731a

41.6824 

41.6827 

54.3269 

54.3274 

63.2773 

63.2776 

89.9353 

89.9355 

127.3573

127.3595
aResults from Ref. (11). 
 
 

Table 4 –Three cases of elastically restrained boundary conditions of three-beam system 

Three cases 

Boundary restraining conditions for three-beam system 

Beam 1 Beam 2 Beam 3 

x=0 x=L x=0 x=L x=0 x=L 

Case 1 
Simply 

supported 
Simply 

supported Clamped ĥ1=Ĥ1=100 ĥ0=Ĥ0=50 Clamped 

Case 2 ĥ0=Ĥ0=100 ĥ1=Ĥ1=100 ĥ0=Ĥ0=300 ĥ1=Ĥ1=100 ĥ0=Ĥ0=50 Clamped 

Case 3 ĥ0=Ĥ0=75 ĥ1=Ĥ1=75 ĥ0=Ĥ0=150 ĥ1=Ĥ1=150 ĥ0=Ĥ0=300 ĥ1=Ĥ1=300

 
Now, let us consider more complicated boundary restraining conditions for this three-beams, 

tabulated in Table 4 are the three cases considered in the subsequent calculation, in which the 

non-dimensional boundary restraining stiffness is used, with its definition as 3ĥ /kL EI and 

Ĥ /KL EI . 
 

Table 5 – The first six natural frequencies n for the three-beams with various boundary conditions (k12= 
k23=1105N/m2, K12=K23=0) 

Boundary 

conditions 

Natural frequencies n 

1 2 3 4 5 6 

Case1 
27.9139 38.6784 56.4838 71.8640 79.1605 87.4107 

27.9141a 38.6784 56.4838 71.8644 79.1610 87.4110 

Case 2 
27.5359 38.9941 49.2193 58.7721 70.2931 74.7400 

27.5360a 38.9941 49.2193 58.7721 70.2935 74.7401 

Case 3 27.3149 43.3336 45.5920 61.7903 65.2249 78.3226 
aResults from Ref. (11). 
 
Table 5 shows the calculated natural frequencies of the three-beams with various boundary 

conditions, for these complex boundary restraints, the results obtained in Ref. (11) are also presented. 
The corresponding mode shapes for this three-beams with the boundary conditions of case 3 are 
plotted in Fig. 3. 
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Figure 3 – The first six mode shapes for the three-beams with case 3 boundary conditions (k12= 
k23=1105N/m2, K12=K23=0) 

 
 

Table 6 – The first six natural frequencies n for the three-beams with various classical boundary 
conditions (K12=K23=1105N/m2, k12= k23=0) 
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Boundary 

conditions 

Natural frequencies n 

1 2 3 4 5 6 

Case1 21.9587 24.2448 30.6282 64.9618 71.2026 81.4105 

Case 2 24.2420 24.6446 28.5599 44.5832 56.9182 65.0601 

Case 3 22.0001 28.7643 34.7959 40.3089 52.7630 66.9391 
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Figure 4 – The first six mode shapes for the three-beams with case 3 boundary conditions 
(K12=K23=1105N/m2, k12= k23=0) 

 
Finally, the translational restraining spring between the interface of three-beams is removed, while the 

rotational restraining spring of the same value is applied. Tabulated in Table 6 are the first six natural 
frequencies of such three-beams, the effect of the rotational restraint on the modal characteristics of this 
coupling system can be observed from the comparison between Table 5 and Table 6. The corresponding 
mode shapes for the system with the case 3 boundary condition and rotational restraint are also plotted in 
Figure 4.  
 

4. CONCLUSIONS 
In this paper, free vibration analysis of the elastically connected beams is performed, two types of 

restraining springs are introduced at the both ends and the coupling interfaces of the multiple beam 
systems. The energy principle is employed to describe the system dynamics of the coupling system. 
In order to ensure the convergence and accuracy of the Fourier series solution through Rayleigh-Ritz 
procedure, supplementary functions are added to remove the relevant spatial derivative 
discontinuities in the whole solving interval. All the modal characteristics can be obtained from a 
standard eigenvalue problem of the final system matrix. 

Theoretical formulation is then implemented by writing the simulation codes, the model 
parameters used in other literature is chosen with the aim of validating the current methodology. 
When setting the rotational spring stiffness into zero on the common interface, the model will be 
degenerated into that in the literature. The comparison shows that the these two models agree very 
well. The effect of inclusion of rotational spring stiffness is also studied, the results show that such 
type of coupling stiffness has some influence on the modal characteristics of the multiple elastically 
connected beams. Although two and three coupled beams are solved in this work, this model can be 
easily extended to analyze the dynamics of elastically connected beams of any number.  
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