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Modelling the forced response of a stiffened structure 

James A. FORREST1 
1 Defence Science & Technology Organisation, 506 Lorimer St, Fishermans Bend VIC 3207, Australia 

ABSTRACT 

Different analytical approaches can be used to model the forced response of the beam-stiffened plates or 
shells that are commonly found in many practical structures from ships to aircraft. A popular method is to 
smear the mass and stiffness properties of the beam stiffeners to give an orthotropic plate or shell. This is 
simpler than modelling discrete stiffeners. This paper considers the example problem of a cylindrical shell 
with ring stiffeners. Previous work using periodic structure theory has shown that the calculated wave 
propagation behaviour in this cylinder using a smeared shell model is different from that with the stiffeners 
modelled discretely. The current work calculates the forced response of the cylinder using both models and 
compares the results to determine the range of applicability of the smeared shell approach. 
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I-INCE Classification of Subjects Number(s): 43.2, 75.9 

1. INTRODUCTION 
Plates and shells are basic structural building blocks and their dynamics have been of interest since the 

earliest investigations in mechanics. Stiffeners in the form of beams of various cross-sections are used in 
many plate and shell structures to increase stiffness and strength with a minimal increase in weight. Earlier 
work on stiffened plates and stiffened cylindrical shells is described by Leissa (1, 2). These approaches treat 
the stiffened structure as an equivalent orthotropic one, i.e. the stiffeners’ mass and stiffness is effectively 
smeared over the continuous plate or shell. As noted by Leissa (2) and compared by Ruotolo (3), there are a 
number of thin-shell theories, which differ in the terms included to account for shell bending. 

The advantage of smearing the stiffener properties is that it makes the solution of the plate or shell 
dynamics only a little more complicated than the uniform isotropic case. Gan et al. (4) apply the smeared 
approach in a wave propagation method to solve the natural frequencies of a ring-stiffened cylindrical shell. 
Luan et al. (5) propose improvements to the smeared approximation for cross-stiffened rectangular plates. 
Beyond simple smearing, Junger and Feit (6) consider reaction forces on a plate due to just the translational 
and rotary inertia of regularly spaced stiffeners. 

Large structures with evenly spaced stiffeners can be analysed as infinite periodic structures. Structural 
periodicity results in pass and stop bands of vibration transmission which are not accounted for in 
smeared-stiffener analysis. Mace (7) considers infinite fluid-loaded stiffened plates excited by line and point 
forces, giving general expressions for the stiffener reaction forces and moments and specific values for 
beam-like stiffeners. Langley (8) applies the periodic method to a chain of plates joined end to end, each with 
two sides simply supported and a stiffener at the joins. He also discusses the use of a dynamic stiffness matrix 
for a single plate unit in assembling a structure with varied stiffener spacing from a finite number of plate 
units. Hodges et al. (9) model an infinitely long ring-stiffened cylindrical shell using Fourier decomposition 
and space-harmonic analysis, with the cross-section of the symmetric stiffeners allowed to distort. Mead and 
Bardell (10) investigate wave propagation in a cylinder with axial stiffeners (stringers), and in a cylinder with 
circumferential (ring) stiffeners in (11). They allow for stiffeners of arbitrary cross-section. The approach 
assumes periodicity in the circumferential or axial direction respectively, and seeks propagation constants 
that are related to the wave types in the cylinder. They note that either axial or circumferential stiffeners can 
be considered with this method, but not both together. Lee and Kim (12) apply a similar method for sound 
transmission through a ring-stiffened aircraft fuselage, but treat each stiffener as a lumped mass, translational 
spring and rotational spring. Efimtsov and Lazarev (13) demonstrate a solution for periodically stiffened 
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plates and shells using space-harmonic expansions which is more amenable at high frequencies than the 
propagation constant method. Solaroli et al. (14) analyse periodically stiffened shells numerically using the 
finite-element method. 

A cylindrical shell with ring stiffeners will be considered in this paper. Such shells are of practical interest 
in many applications. A cylindrical shell is equivalent to a plate rolled up, but the introduction of the 
curvature couples all three displacement components together. This makes its dynamics more interesting than 
a flat plate, where the bending vibration is decoupled from the two in-plane components. Periodic structure 
theory was applied in Forrest (15) to compare the wave propagation in a plain cylindrical shell, the shell with 
smeared stiffener properties, and the shell with discrete stiffeners. The propagation parameters were different 
in each case. The techniques of that paper will be refactored in this one to consider the forced vibration of a 
cylinder with ring stiffeners, modelled using both a smeared shell approach and a discrete stiffener approach. 

2. MODELLING 
The equations of motion for a thin cylindrical shell including the option of smeared ring stiffeners will be 

presented. These can then be used to calculate the wavenumbers for free vibration propagation in a length of 
cylinder. Consideration of the general force boundary conditions along with the general displacement 
functions allows the calculation of the dynamic stiffness matrix for the length of cylinder either from the 
smeared shell approach or plain shell with discrete stiffener approach. A number of dynamic stiffness 
matrices can be assembled to model a finite cylinder with several ring stiffeners. This allows the calculation 
of the forced response of the stiffened cylinder using either model. 

2.1 Equations of Motion 

Figure 1 shows a thin cylindrical shell of radius � , thickness ℎ and length � . Also shown is the 
coordinate system � (longitudinal), � (tangential) and � (radial) centred on an element of the shell surface 
which is at angular position �. 

 

 

Figure 1 – A cylindrical shell of radius �, thickness ℎ and length � showing the coordinate system used. 
 
A thin cylindrical shell with ring stiffeners will be considered here. Leissa (2) gives results for a number of 

orthotropic shell formulations. When these are applied to shells with individual stiffeners, the stiffener 
properties are effectively smeared over the whole shell. If the approach of Mikulas and McElman, quoted in 
Leissa (2), is simplified to consider only ring stiffeners and ignore longitudinal stringers, and inertia terms 
and general distributed forces are also added in, the equations of motion presented in Forrest (15) are the 
result. They are the Donnell-Mushtari shell equations with extra terms for the stiffeners. These can be 
modified to use the Love-Timoshenko shell equations given in Mead and Bardell (10), to better match the 
force expressions in Mead and Bardell (11), which are developed from the same shell equations. Compared to 
the Donnell-Mushtari equations, the Love-Timoshenko and other alternative thin shell equations include 
extra terms for shell bending, which can better model the bending effects in shells with higher 
thickness-to-radius ratios. The three equations of motion for equilibrium along each coordinate are 
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where �, � and � are the displacements and ��, �� and �� are the external forces per unit area in the �, 
� and � directions respectively. These forces are set to zero to calculate natural frequencies or free waves in 
the shell. They can also be expressed as Dirac delta functions to represent point forces in the middle of the 
shell between boundaries, but this will not be used in this paper. � ≡ ℎ� 12��⁄  is the thickness ratio. The 
subscripts � and � on �, � and � denote differentiation with respect to those variables, while dot denotes 
differentiation with respect to time. The shell and the ring stiffeners are assumed to be of the same material 
with a Young’s modulus � and Poisson’s ratio �. 

The ring stiffeners placed along the cylinder give rise to the shell stiffener parameters 

�� ≡
�(1 − ��)

�ℎ
       �� ≡

�̅�(1 − ��)

�ℎ�
       �� ≡

3�(1 − �)

�ℎ�
       �� ≡

12(��� + �̅��)(1 − ��)

�ℎ�
 (4) 

where � is the axial spacing of the stiffeners, and the stiffener cross-section has area �, second moment of 
area ���, torsion constant � and its centroid is a distance of � from the shell middle surface. Using the 
parameters in Equations (4) smears the stiffener properties across the shell.  Setting them all to zero, i.e.  
�� = �� = �� = �� = 0, gives the equations of motion for a plain (uniform isotropic) shell. 

For a plain shell, � is the density of the shell material.  When the stiffeners are included, � is �/ℎ 
where � is the average smeared out mass per unit area of the stiffened shell, i.e. incorporating the mass of 
the stiffeners. If the stiffener’s cross-sectional dimensions are small compared to the radius R, then the 
effective density is 

� = (1 + � �ℎ⁄ )��������� (5) 

For the smeared model, it can be seen from Equation (1) that the only effect on the axial equilibrium equation 
of adding ring stiffeners is this added mass. 

2.2 Calculation of wavenumbers and displacements 

To solve for free waves in the shell, harmonic solutions of the form 

� = ����� cos �� ����� 

� = ����� sin �� ����� 

� = ����� cos �� ����� 

(6) 

are substituted into Equations (1) to (3), where each displacement function is described by the axial 
wavenumber �  which is to be solved as a function of circumferential mode number �  and angular 
frequency �. The complex exponential sign convention used here means that positive real values of � 
correspond to waves propagating in the positive �-direction, while positive imaginary values correspond to 
evanescent waves decaying in the same direction. With this convention, damping can be included in the 
model by replacing � by a complex modulus �(1 − ��) where � is the loss factor of the material. 

The substitution of solutions (6) into the equations of motion leads to three simultaneous equations that 
can be written in the matrix form 

�

��� ��� ���

��� ��� ���

��� ��� ���

� �
�
�
�

� = �
0
0
0

� (7) 

where the matrix coefficients are functions of the previously defined parameters given by 
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��� = − ���� − (1 − �)�� 2⁄ + �� 

��� = � (1 + �)��� 2⁄  

��� = ���� 

��� = − � (1 + �)��� 2⁄  

��� = − (1 − �)��(1 + �)�� 2⁄ − [1 + � + ��]�� + �� 

��� = − [1 + ��]� − (2 − �)������ − [� + ��]�� 

��� = ���� 

��� = [1 + ��]� + (2 − �)������ + [� + ��]�� 

��� = [1 + ��]+ 2���� + ����� + 2����1 + ������� + �[1 + ��]�� − �� 

(8) 

with the additional non-dimensional frequency parameter �� ≡ �(1 − ��)���� �⁄ , which is the squared 
ratio of the frequency to the shell ring frequency. The ring frequency is that of the “breathing” mode of the 
whole shell, where the wavelength of longitudinal waves is equal to the shell circumference. 

Equation (7) has a non-trivial solution when the determinant of the matrix is zero. The determinant can be 
expanded out explicitly in terms of the coefficients ��� to give a quartic polynomial in ��. This can be 

solved numerically to eventually give eight values of � for a given frequency � and mode number �. 
Substituting each of these values of � back into the matrix equation in turn allows the calculation of the 
corresponding values of �, � and �. Since the determinant is zero, the rows of the matrix are no longer 
linearly independent and these coefficients can only be found as relative values, such as the ratios �/� and 
�/�. These ratios can be calculated from any two rows of the matrix in Equation (7). One solution is 

���

���
≡ ��� =

− ������ + ������

������ − ������
           

���

���
≡ ��� =

������ − ������

������ − ������
 (9) 

where the subscript � refers to the particular wavenumber (1 to 8). The ratios ���/��� and ���/��� can be 
considered to determine the relative amounts of motion in each direction associated with each wavenumber. 
For example, if ���/��� is large and ���/��� is small, then the motion is predominantly axial. If both ratios 
are less than unity, then the motion is predominantly radial, and so on. 

Thus the coefficients � and � in solutions (6) can be written in terms of �. The total displacements are 
the sum of the contributions from each wavenumber relevant to the problem at hand. They can be written as 

� = � � ������������ cos ��  �����
�

���

�

���
 

� = � � ������������ sin ��  �����
�

���

�

���
 

� = � � ��������� cos ��  �����
�

���

�

���
 

(10) 

showing the sum of terms due to the eight roots for ��� over the range of circumferential mode numbers �. 
Each root has its negative counterpart, so the two represent a pair of waves, one travelling in the positive 
�-direction, the other in the negative �-direction. While an infinite number of circumferential modes have 
been included, in practice only as many as needed to reach convergence have to be used. 

2.3 Forces acting on the ends of a cylindrical section 

The displacements in Equations (10) are functions of the unknown coefficients ���. These can be solved 
from a knowledge of the boundary conditions acting on a length of cylinder. This length can be taken as the 
section of cylindrical shell between ring stiffeners, or for the smeared shell model, the total length of the 
cylinder. To construct a dynamic stiffness matrix for this length, generalised end forces are required. The 
force convention that will be used is that forces are positive in the direction that their corresponding 
displacements are positive. This gives dynamic stiffness matrices that are suitable for assembly in the same 
way as stiffness matrices are assembled in the finite-element method. The end forces and moments per unit 
length acting on a cylindrical unit of length � are shown in Figure 2. They are shown across an isometric 
view and a side view. The forces act around the whole circumference of the ends, but for clarity are only 
shown at part of the circumference on the diagram at the left and at the top of the diagram on the right. 
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Figure 2 – The line forces and moments acting on the ends of cylindrical unit, isometric and side views.  
 
Expressions for the end forces are given by Mead and Bardell (11). These allow for stiffeners of arbitrary 

open, not necessarily symmetric, cross-section. If a stiffener is of rectangular section of width � and depth �, 
which is a symmetric and relatively slender section, the Wagner torsion-bending constant � can be taken as 
zero, as can the product moment of area ���. Taking account of the required sign convention, the end force 
expressions can then be simplified to the following formulae. 
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These are based on Love-Timoshenko shell theory, as are the equations of motion (1) to (3). Where there 
are plus-minus signs, the top sign corresponds to the expression for the end at � = 0, while the bottom sign is 
for the end at � = � . The first term in each expression, grouped with curly brackets, represents the 
contribution of shell deformation to the forces. The remaining terms represent the contribution of beam 
stiffener deformation to the forces. The factor of one-half outside this second group of terms in each force 
expression is because only half a stiffener is considered at each end of the cylinder unit. When cylinder units 
are assembled, the two halves give a whole stiffener at the join. 

To model a cylindrical shell with the smeared stiffener approach, only the shell contribution terms in the 
forces are used, with the stiffener terms included in the displacement solutions. To model discrete stiffeners, 
the full force expressions above are used, with the displacement solutions derived from the equations for a 
plain shell, i.e. without added stiffener parameters. 
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2.4 Calculation of the dynamic stiffness matrix 

The dynamic stiffness matrix relates the forces at the ends � = 0 and � = � of a cylinder unit to the 
displacements at the ends of the unit. A displacement vector � and force vector � can be made up of these 
forces and displacements as 

� = [�� �� �� ��
� �� �� �� ��

� ]� = � ��

�

���
 
cos
sin

 (��) ����� 

� = [�� �� �� �� �� �� �� ��]� = � ��

�

���
 
cos
sin

 (��) ����� 
(15) 

where “sin” is used for the tangential displacement ��,� and tangential force ��,� and “cos” is used for all 
other forces and displacements. The elements of these vectors are the forces and displacements developed 
earlier, calculated at the ends as denoted by their subscript. Dash indicates derivative with respect to �, so 
that the ��,�

�  elements are rotations.  
The elements of the modal harmonic displacement and force vectors �� and �� can be calculated from 

the displacement equations (10) and the force equations (11) to (14), as functions of the coefficients ���. 
They can be written in matrix form as 

�� = [��]���         �� = [��]��� (16) 

where ��� is the vector of the eight unknown coefficients. Matrices [��] and [��] are functions of �, � 
and the wavenumbers ���, as well as the ratio quantities ��� and ���. The rows relating to forces or 
displacements at � = � also contain exponential terms of the form ������. The two equations (16) can be 
used to eliminate ���, giving  

�� = [�][�]���� = [��]�� (17) 

where [��] is the dynamic stiffness matrix.  
A number of these dynamic stiffness matrices can be assembled as in the finite-element method to model 

several cylindrical units joined end-to-end. This process gives a larger dynamic stiffness matrix which is 
heavily banded about the diagonal. Of course, each component matrix describes a bigger part of the structure 
than a finite element does, so the representation is still relatively compact. For example, if the 8 by 8 matrix 
[��] is partitioned into 4 by 4 blocks as 

[��]= �
��� ���

��� ���
 � (18) 

then the assembled matrix [��]� to model the larger structure of 5 identical units joined together takes the 
form 

[��]� =

⎣
⎢
⎢
⎢
⎢
⎡
��� ��� 0 0 0 0
��� ��� + ��� ��� 0 0 0

0 ��� ��� + ��� ��� 0 0
0 0 ��� ��� + ��� ��� 0
0 0 0 ��� ��� + ��� ���

0 0 0 0 ��� ���

 

⎦
⎥
⎥
⎥
⎥
⎤

 (19) 

where the zeros represent 4 by 4 blocks of zeros. This can be generalised to the dynamic stiffness matrix 
[��]� to represent � units joined up. This matrix has � + 1 blocks along the diagonal band, or in other 
words is 4(� + 1) by 4(� + 1) elements in size. It can be used in place of [��] in Equation (17), with the 
vectors �� and �� also replaced by larger vectors representing all the forces and displacements at the unit 
boundaries, including the free ends of the assembled structure. 

A point force at the end can be represented as a Dirac delta function of the angular position �. For a 
longitudinal or radial force acting at � = 0, this can be written as a Fourier cosine series as follows. 

�� =
�(�)

�
=

1

2��
+ �

1

��
cos ��

�

���
 (20) 

For the response of a single cylindrical unit, the appropriate force component in the vector �� in Equation 
(17) is set to 1 2��⁄  for � = 0 or 1 ��⁄  for values of � ≥ 1 . This allows the calculation of the 
corresponding ��, which can then be summed according to the first of Equations (15) to give the total 
displacements. A similar process is followed for the response of several cylindrical units joined together, 
using instead the larger dynamic stiffness matrix assembled from several of those for a single unit. 
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3. RESULTS AND DISCUSSION 
The cylindrical shell considered here is based on the plain (unstiffened) steel shell for which 

experimentally determined modes and natural frequencies are compared to theoretical ones in Forrest (16), 
and sound radiation and active control are analysed in Forrest (17). The notional stiffener parameters are 
similar to Forrest (15), but with a depth of 12 mm instead of 30 mm to keep the depth to radius ratio small. 
The shell and ring stiffener properties used to generate the results are given in Table 1. 

Other parameter values are derived from these, such as � = � 2(1 + �)⁄ , ��� = ��� 12⁄  and ��� =
��� 12⁄ . Young and Budynas (18) give formulae for the torsion constant J, which they denote K, for various 
cross-sections. For a rectangular cross-section, the torsion constant is given within 4% accuracy by 

� = �� � �
1

3
− 0 ⋅ 21

�

�
�1 −

��

12��
�� (21) 

for the notation used here, with d > b. The loss factor � is applied to the Young’s modulus � to give a 
complex modulus, as described earlier. 

 
Table 1 – Properties of the cylindrical shell and ring stiffeners 

Quantity Symbol Value 

Shell radius � 200 mm 

Shell thickness ℎ 2 mm 

Shell length � 1.5 m 

Stiffener spacing � 100 mm 

Stiffener width � 4 mm 

Stiffener depth � 12 mm 

Young’s modulus � 210 GPa 

Loss factor � 0.01 

Poisson’s ratio � 0.3 

Density � 7800 kg/m3 

 

3.1 Numerical Considerations 

The software package Matlab was used to generate the results in the following section.  However, this 
presented some numerical challenges, at least for the parameters of the example cylinder considered. 
Attempting to use numerical polynomials in Equation (7) and then calculate the determinant of the matrix to 
obtain the numerical polynomial in �� failed to give correct roots for �, and sometimes even only generated 
a cubic equation in �� rather than a quartic one. This was because the spread of numerical values of the 
polynomial coefficients was too great, leading to significant round-off error. Instead, the wxMaxima 
computer algebra system was used to expand the determinant of Equation (7) symbolically and hence give 
symbolic expressions for the coefficients of the quartic polynomial in ��. These coefficients were then used 
in Matlab to calculate the roots of the characteristic equation numerically. 

The matrices used to calculate the dynamic stiffness matrix in Equation (17) can be badly scaled because 
of the rows containing the exponential terms ������. When a particular root ��� has a negative imaginary 
part, the corresponding exponential expressions can be very large numerically, as the overall exponent has a 
positive real part. The matrices still contain very small numerical values as well. This poor scaling leads to 
matrices that are numerically close to singular, and consequently to an inaccurate and badly scaled dynamic 
stiffness matrix. The scaling method described by Langley (8) was adapted to address this. The coefficients 
��� corresponding to the problem roots are replaced by scaled coefficients ���������� in both of Equations 
(16). With this substitution, the corresponding elements in [��] and [��] are multiplied by �������. This 
cancels the ������ terms in the problem matrix elements. This is all that is needed to accurately calculate the 
dynamic stiffness matrix from Equation (17) and then determine end forces or displacements. However, the 
scaling has to be eventually backed out if calculating displacements across a unit from Equations (10), as this 
makes use of the now scaled coefficient vectors ��� that would be derived from Equations (16) with known 
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end states of force or displacement. 
It was found that computations using assembled dynamic stiffness matrices of the type illustrated by 

Equation (19) could be sped up by using sparse matrix storage and sparse matrix computation methods. The 
time taken was about one third less for each effective inversion of �� to calculate �� from Equation (17), 
compared to using the fully dense version of the assembled matrix. While this is perhaps trivial for the 
calculations here, which take a minute or two to complete, it could be significant for matrices representing 
much larger assemblies of cylindrical units. 

The summations for total displacements, such as in Equations (10) and (15), begin from � = 0. This is 
the axisymmetric case, i.e. � = 0, and renders the matrices in the previous development singular and 
unusable for calculation of displacements. A separate axisymmetric formulation would be needed to generate 
the � = 0 terms for � and �. Therefore only the terms for � ≥ 1 were used in the summations to generate 
results. This may neglect some axisymmetric axial modes. However, for radial motion, the � = 0 terms 
become most important around and above the ring frequency, which is 4328 Hz for plain shell sections using 
the parameters in Table 1. The results in the next section are considered for frequencies well below this, and 
so are still a reasonable basis for comparing the two modelling approaches. 

3.2 Forced response results 

A shell with smeared stiffeners was modelled by single dynamic stiffness matrices calculated for each � 
using the full length � of 1.5 m. A shell with discrete stiffeners for comparison was modelled for each � by 
assembling � =  15 dynamic stiffness matrices, each representing a cylindrical unit of length �, the stiffener 
spacing of 0.1 m. The smeared stiffener shell model included the stiffener parameters (4) in the equations of 
motion (1) to (3) and hence the characteristic equation to calculate the roots ���, but only included the shell 
force terms in the force expressions (11) to (14). In contrast, the discrete stiffener model excluded the shell 
stiffener parameters from the equations of motion, but used the full force expressions (11) to (14) including 
the stiffener force terms. Each of these dynamic stiffness matrices, corresponding to a circumferential mode 
number �, was calculated over a frequency range from 1 Hz up to 3000 Hz. 

For each �, the response �� was calculated from Equation (17) for the modal component of a unit axial 
force or a unit radial force. This meant a force vector �� with �� = 1 ��⁄  and �� = 1 ��⁄  respectively, and 
all other force elements set to zero. These values correspond to forces applied at � = 0. The modal responses 
were calculated from � = 1 to � = 20, the � = 0 case resulting in singular matrices as described in the 
previous section and so not included. In each of the axial and radial cases, the driving point response at 
� = 0 and the response at the other end � = � were considered. From the first of Equations (15), it can be 
seen that the axial responses �� and �� and the radial responses �� and �� at � = 0 are simply the sums 
of their modal components. These summed displacements are presented in the following figures. 

Figure 3 shows the axial responses. All 20 modal terms were added progressively and plotted at each step 
to check convergence. It was found that the driving point responses converged to those shown after about 17 
terms, although the last few of those only changed the responses between the resonant peaks. The responses 
at the other end converged after about 10 terms. The comparison of the two models for the driving point 
clearly shows that they produce similarly shaped responses, but the peaks are in different positions. Some of  

 

 
Figure 3 – Axial responses to an axial point load at the driving point and the opposite end of the cylinder. Red 

is for the shell with smeared stiffeners, blue is for the shell with discrete stiffeners. 
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the peaks for the smeared stiffener model are higher in frequency than the corresponding ones for the discrete 
stiffener model, e.g. the resonances at about 500 Hz. However, above 500 Hz many of the smeared shell 
resonances are lower in frequency by about 10%.. This effect is somewhat less clear in the responses for the 
opposite end, but still apparent for a number of the peaks. This might be due to differences in the way the 
extra mass of the ring stiffeners is accounted for. In fact, Equation (5) gives an effective density for the 
smeared shell of 24% greater than the material density. If the resonance frequencies are inversely 
proportional to the square root of the mass density, as might be expected from analogy to a simple 
mass-spring model, then this would lead to a reduction of just over 10% in the frequencies compared to using 
the unadjusted material density. However, a check using the unadjusted density in place of the effective 
density did not shift the smeared shell resonances very much and certainly not into alignment with the 
discrete stiffener model. The description in Leissa (2) is also very clear that the effective mass per unit area 
should be used in the smeared stiffener model. There is a more complex interplay between the mass and 
stiffness representations in each of the models. 

The levels of the axial responses from the two models are about the same. Adding ring stiffeners should 
not change the stiffness of the shell in the axial direction much, so smearing out their effects does not change 
the average stiffness at the driving point for an axial excitation. The discrete stiffener responses do show a 
number of extra small peaks superimposed on the overall response, particularly noticeable at frequencies 
below 750 Hz. These could be due to additional modes set up between discrete ring stiffeners encompassing 
shorter lengths of shell than the total length. These cannot be represented by a smeared shell model. 

 

 
Figure 4 – Radial responses to a radial point load at the driving point and the opposite end of the cylinder. Red 

is for the shell with smeared stiffeners, blue is for the shell with discrete stiffeners. 
 
The radial responses are shown in Figure 4. Similar numbers of modal terms as for the radial responses 

were needed for converged results. The same shifting of many of the resonances between models occurs for 
the radial direction; although it is not clear from the total responses shown, it was in individual modal 
responses and the summation of the first few terms during convergence checking. However, perhaps most 
noticeable is that the responses from the smeared shell model are significantly higher in magnitude than those 
from the discrete stiffener model. In both examples of Figures 3 and 4, the forces are applied at the position of 
a ring stiffener and the responses are also calculated at the ring stiffeners at each end of the model. The 
stiffness of the ring comes into play for the radial excitation. The smeared shell model averages this over the 
whole shell, while the discrete stiffness model represents it directly. Hence the apparent radial stiffness is 
higher in the discrete stiffener model and the responses are correspondingly lower. 

Further work would include investigating the discrepancy between the resonance frequencies shown in 
the results of each model. This could be through alternative analytical formulations for both smeared and 
discrete stiffener models, numerical modelling such as the finite-element method, or through experimental 
measurement of a ring stiffened cylinder. An axisymmetric case should also be developed to calculate the 
� = 0 contributions to the axial and radial displacements � and � and complete the summations that 
determine the total displacements. Once the modelling is refined, it would be interesting to investigate the 
effect of stiffeners with random spacing. This could be based on the uniform spacing already considered with 
say up to ± 20% variation in the axial placement of the stiffeners, while keeping the overall length of the 
cylindrical shell the same. 
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4. CONCLUSIONS 
Two modelling approaches have been developed to calculate the forced response of a ring stiffened 

cylindrical shell. One smears the mass and stiffness properties of the ring stiffeners over the whole shell, 
while the other considers the stiffeners discretely. Each approach uses a similar process to construct a 
dynamic stiffness matrix for the ring stiffened shell, but accounts for the stiffeners differently. The smeared 
shell model uses stiffener parameters added into the equations of motion that determine the displacements of 
the shell, and force terms that only consider the forces arising from the shell. The discrete stiffener model 
uses the equations of motion for a plain shell, but force terms that include contributions from both the shell 
and the ring stiffeners. 

The calculated results from both models for an example small cylindrical shell showed some differences 
between the two approaches. The smeared shell model gave many resonance frequencies about 10 % lower 
than those for the discrete stiffener model. The discrete model showed small additional peaks superimposed 
on the response between major peaks, probably due to resonances set up between stiffeners at spacings less 
than the overall length of the cylinder. These cannot be represented by the smeared model. The discrete 
model also showed lower radial response levels than the smeared model, because the responses were 
calculated at stiffener positions. The smeared model only averages the stiffener effects over the whole 
cylinder, while the discrete model applies all the stiffener reaction forces at the stiffener position. 
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