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ABSTRACT 
This paper presents the modelling and analysis of the noise radiation due to internal acoustic excitation of a 

cylinder submerged in a heavy fluid. The cylinder consists of a cylindrical shell filled with air and attached to 

rigid end plates. The acoustic excitation is modelled as monopoles to simulate the operation of a machine 

noise source in the cylindrical shell. In order to model the noise transmission and radiation, the machine noise 

is characterised as multiple monopole sources with random amplitudes and random phases on the surfaces of 

an imaginary component boundary. An initial study including the effect of absorbing material on noise 

radiation is presented. Some of the analytical results are compared with those from numerical finite element / 

boundary element models. Excellent agreement is obtained between the analytical results and results from 

the numerical method. 
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1. INTRODUCTION 
Water-loaded cylindrical enclosures are widely used as simple examples to demonstrate the 

acoustic characteristics of underwater vessels. This preliminary study analytically and numerically 

investigates the transmission and radiation of internal machine noise from a cylindrical enclosure 

through modelling. To model the machine noise, the acoustic emission may be characterised as a 

component source, with transfer functions developed to represent the acoustic radiation.  

Sound radiation from a water-loaded vibrating cylindrical shell can be modelled using the 

following three steps. The first step is to model a finite shell. Detailed discussions and comparisons of 

different shell equations were given by Pan and Hansen (1). The second step is to model the excitation. 

The expression for a point force acting on a shell has been widely reported (see, for example, Pan and 

Hansen (1) and Pan et al. (2, 3)). An approximate solution for a single monopole source inside a shell 

was given by James (4). This solution has been validated by Pan et al. (5) where good agreement was 

obtained between the analytical results and results from numerical finite element/boundary element 

(FE/BE) models. The third step is to model the sound radiation from the shell. An approximation for 

sound radiation from a vibrating shell was given by Junger and Feit (6), Tso and Jenkins (7) and Pan et 

al. (5).  

In practice, a machine has a finite size and the enclosure, in some cases, contains some absorption 

material on the internal wall. The first part of the current work is to extend the previous theory on the 

monopole excitation in Ref. (5) to machine noise. To the authors’ knowledge, this work has not been 

addressed previously. The second part of the current work is to model the effect of absorbing material 

on noise radiation.  

The classical description of sound absorption in a diffuse sound field in an enclosure is based on the 

Sabine theory which is given in texts such as Bies and Hansen (8). The Sabine absorption coefficient 

represents the average fraction of incident energy absorbed. The sound decay rate depends on the 

absorption coefficient, the enclosure volume and wall area, and the sound speed.  The absorption 

coefficient may be obtained by measurement of a layer of absorption material on the internal wall of 

the enclosure. However, the absorption coefficient is difficult to incorporate into the current analytical 

model. This paper describes an approximate approach to convert the absorption coefficient into the 

loss factor of the sound speed in the enclosure. Thus, the effect of absorbing material can be easily 

included in the current model. 
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2. ANALYTICAL METHOD 
A finite cylindrical shell model for calculating the far-field pressure, developed by Junger and Feit 

(6) and later used by Tso and Jenkins (7) and Pan et al. (5), is shown in Figure 1(a). The cylindrical 

shell has two rigid end plates (to form a finite cylinder) attached to two semi -infinite rigid baffles, so 

that there is no radiated pressure from the end plates. Figure 1(b) shows the cross -section of the shell 

with an interior monopole source. In figures 1(a) and 1(b), a is the radius, h is the thickness, L is the 

half-length of the shell and 0r  is the radial distance between the source and the z-axis. All symbols 

used are defined in the nomenclature at the end of the paper.  The representation of the machine noise 

source as an equivalent box source is shown in Figure 2. This noise source is modelled as a number of 

monopole sources spread over the corners and faces of the box. 
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Figure 1 – Geometry and coordinate systems of a cylindrical shell: (a) finite cylindrical shell with 

semi-infinite baffles; (b) cross-section of shell with a monopole source. 

 
Figure 2 – Finite cylinder with machine noise  

2.1 Shell Dynamics  
The shell equations used in this paper were given by Junger and Feit (6), who developed the 

Donnell formulation to include water loading for a thin shell. The water loading of the shell was 

obtained by including the acoustic impedance in the formulation. When compared to other thin-shell 

theory such as Flügge (9), the Donnell formulation has fewer terms, which may underestimate the 

effect of bending. However, it was judged that the Donnell formulation is sufficient for the purpose of 

demonstrating the methodology in the modelling of sound radiation due to an acoustic source.  

The spectral displacements (modal amplitudes) of a submerged shell at a particular mode are 

obtained from the following matrix equation: 
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where the elements shown in the first matrix were defined by Pan et al. (5). In Equation (1),  mnU , 

mnV  and mnW  are the spectral displacements in the axial, circumferential and radial directions of the 

shell, m and n are the axial and circumferential mode numbers and mnF  is the modal force which 

describes the type and position of an excitation. The time-harmonic factor tie   is omitted 

throughout. 

The shell has shear diaphragm or “simply supported” end conditions. The far-field radiated 

pressure from the shell is determined by the radial displacement. Therefore, only the radial 

displacement will be presented here. It can be written as a double Fourier series: 
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where mnW  may be obtained from Equation (1). 

2.2 Excitation  
Pan et al. (5) showed that the excitation due to a monopole source inside a shell can be determined 

by the internal pressure ip . The excitation stress of the shell due to an internal pressure ip  is simply 

 

 ).,,(),( zapzF i    (3) 

 

The modal forces mnF  are the coefficients of the Fourier series expansion of the force excitation  F. 

The expression of the modal force due to multiple monopole sources located inside the cylinder is 

given by Pan et al. (5): 
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(4) 

 

where osP  is the complex amplitude of the sth source, j is the number of the monopole sources at 

positions ),...,1,,( jszr ss  . Complex source amplitudes allow for multiple sources with random 

amplitudes and random phases.  

2.3 Far-field Pressure  
Based on the expression for the pressure radiated from a vibrating shell to the far field (Ref. (5)), 

the pressure due to multiple sources can be expressed as:   
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The radiated pressure from the shell due to multiple random monopoles can be obtained by substituting 

the modal force from Equation (4) into Equation (1) to determine mnW ,  and then using Equations (5) 

and (6) to solve mnG  and ),,( RPr  respectively.  

2.4 Sound Absorption  
The absorption coefficient is the fraction of incident energy which is absorbed at a surface  

containing the absorbing material of a reverberant room. Absorption coefficients for some commonly 

used materials were given by Bies and Hansen (8). As the effect of sound absorption is difficult to 

incorporate into the current analytical model, an approximation approach is adopted here by assigning 

the effect of sound absorption to acoustic damping in the enclosure. The acoustic damping is modelled 

as a loss factor term in the speed of sound in the enclosure.  

The speed of sound for a fluid is defined by Ref. (8): 
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where K  is the bulk modulus and   is the density. Equation (7) implies that damping can be 

included in the speed of sound via the bulk modulus K by using a complex modulus, 

 

 )1(*

KiKK   (8) 

where K  is a damping loss factor. The damped sound speed is obtained by replacing *K  with K  

in Equation (7) as: 
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where 2/Ki    is the acoustic damping. 

Equivalent measures of damping near a modal resonance frequency are (Ref. (8)): 
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where f  is the 3 dB bandwidth, f is the resonance frequency and   is the logarithmic decrement. 

The logarithmic decrement is defined in Ref. (8): 
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where 0A  is the initial amplitude of the oscillating system and nA  is its amplitude n cycles later. 

Based on the Sabine absorption model, the decay equation of mean squared pressure 2p  in a 

reverberant sound field averaging over the modes in a band is given by Ref. (8): 
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where 
2

0p  is the initial mean squared pressure, S is the surface area,   is the absorption 

coefficient and V is the enclosure volume. Using the definition of one period  /2/1  fT , the 

pressure amplitudes at 00 t  and  /21 t  are given by:  
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Setting 1n  in Equation (11), the logarithmic decrement may be related to the absorption 

coefficient as:  
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Substituting Equation (14) into Equation (11) gives the expression for the damping  
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Note that   itself varies with frequency. As an approximation, an average value of K  over an 

octave band of band centre frequency   is used in the present study.  Using the definition 

2/Ki   , the relationship between acoustic damping and absorption coefficient is given by:  
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Equation (16) enables the effect of sound absorption materials in the cylindrical shell to be modelled 

as a loss factor term in the speed of sound according to Equation (9).  

  

3. NUMERIAL METHOD 
  For validation of the analytical method, a fully coupled FE/BE model (Ref. (5)) was developed 

where the FEM was used to model the cylindrical shell and the BEM was used to model the interior and 

exterior fluid domains. The software package ANSYS was used to build the FE model and the code 

AKUSTA was used to generate the BE model. The approach is described in more detail in Ref. (5). The 

cylindrical shell and the flat end plates have been discretized using 2240 quadratic finite elements. The 

internal fluid has been modelled using 496 linear boundary elements and the external fluid has been 

modelled using 576 linear boundary elements. Two source configurations with equal source strengths 

were considered: 

1. A single acoustic monopole with a surface pressure of 1 Pa applied to a 1 m radius sphere. Note, that 

the sphere is not actually modelled, the radius is only required to determine the source strength; 

2. 14 acoustic monopoles distributed over an imaginary surface of a box with dimensions 0.13.05.0    

m (1 m box) and 0.23.05.0  m (2 m box). The source strengths were assigned randomly to the 

monopole sources with the total source strength being equal to that of configuration 1. The 14 

equivalent sources were located at the 8 corners and the central points of the 6 surfaces of the 

imaginary machine boundary. 

4. RESULTS 
The results presented in this paper are based on the cylindrical shell with the geometric and material 

properties and excitations shown in Table 1. The maximum mode numbers used in the analytical 

method are also included in Table 1. 

 

Table 1 – Shell and fluid parameters, and excitations  

 

Steel shell 

111095.1 E  N/m
2
, ,29.0  0.7700s kg/m

2
, 0.1a m, 01.0h m, 

0.102 L m (shell length), 0.102 L m (shell length) 

Exterior fluid 0.1000e kg/m
3
, 0.1500ec m/s (water)  

Interior fluid 21.1i kg/m
3
, 0.343ic m/s (air) 

Monopole source 10 P Pa, )0,0,0(),,( zr  (centre), )0,0,3/2(),,( azr   (off-axis) 

 

Machine source 1
14

1


s

osP  Pa, 3.0mw m (width of box), 5.0mh m (height of box), 

12 ml m ( length of 1 m box), 22 ml m ( length of 2 m box), 

)0,0,0(),,( zr   (centre), )0,0,3/2(),,( azr   (off-axis) 

Maximum mode numbers  axial modes: 9, circumferential modes:10, acoustical modes: 20 

 

In Table 1, the monopole source and the centre of the machine/box source are at the origin of the 

coordinate system or slightly shifted from the origin to )0,0,3/2(),,( azr  . The latter position of the 

source is to excite both axisymmetric and non-axisymmetric modes. These sources are named as the 

central excitation and off-axis excitation respectively. Damping in the shell wall is included by using 

a complex representation of the Young’s modulus )1(* iEE   where   is the loss factor and has a 



Page 6 of 10  Inter-noise 2014 

Page 6 of 10  Inter-noise 2014 

value of 0.02. The sound pressure was calculated at 1000 m with  90  and  0 , and normalised 

to 1 m range by adding 60 dB. The dB reference level is 1 μPa.  

 

4.1 Analytical Results  
The machine noise in the analytical model was simulated as described in configuration 2 for the 

numerical approach (see Section 3). For an initial comparison, the analytical results due to a central 

excitation are presented. Figure 3 shows the comparisons of the radiated pressure due to one monopole 

source and those due to 14 equivalent sources in-phase or with random phases. The sharp peaks occur 

at frequencies which correspond to the natural frequencies of the interior enclosure with rigid 

boundaries, while some less significant peaks correspond to the resonances of acoustically efficient 

shell modes. Results shown in Figure 3 indicate the radiated pressure due to one monopole source is in 

good agreement with that of the 14 in-phase sources at frequencies where the internal acoustic wave 

length is larger than the diameter of the shell )2( ai  and the spacing of the monopole sources. These 

frequencies are below 171 Hz for the current shell dimensions. Here, the shell acts as a one 

dimensional waveguide. At and above 171 Hz )2( ai  , cross modes occur inside the enclosure. The 

response to the multiple sources then becomes more complex.  

It is noticed the radiated pressure due to one monopole source is much higher than that of the 14 

random phased sources below 171 Hz. This is because the 14 sources with random phases can cancel 

out with each other if they are out of phase. The peaks at 20 Hz shown in the green lines (random phase 

sources) in Figures 3(a) and 3(b) are the acoustic modes which are also present when the off-axis 

excitation is applied (see Figure 4). Above 171 Hz, the responses of the multiple sources become more 

complex due to source interactions.  
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Figure 3 – Far-field radiated pressure from a water-loaded shell due to the central excitation of a monopole 

or multiple sources located on a box from the analytical method: (a) compared with 1 m box; (b) compared 

with 2 m box. ─, one monopole; ­ ­ ­, 14 equivalent sources in-phase; − ∙ −, 14 equivalent sources with 

random phases. 
 

Figure 4 presents the results for the off-axis excitations. The modal responses of the shell are quite 

different from those shown in Figure 3 since the off-axis source excites the non-axisymmetric modes 

in the enclosure and on the shell, notably the mode at 20 Hz which is also excited by the random phase, 

centrally excited sources.  



Inter-noise 2014  Page 7 of 10 

Inter-noise 2014  Page 7 of 10 

0 100 200 300
60

80

100

120

140

160

180

Frequency [Hz]

R
a
d
ia

te
d
 p

re
s
s
u
re

 (
d
B

)

0 100 200 300
60

80

100

120

140

160

180

Frequency [Hz]

(a) (b)

 
Figure 4 – Far-field radiated pressure from a water-loaded shell due to the off-axis excitation of a 

monopole or multiple sources located on a box from the analytical method: (a) compared with 1 m box; (b) 

compared with 2 m box. ─, one monopole; ­ ­ ­, 14 equivalent sources in-phase; − ∙ −, 14 equivalent 

sources with random phases. 

 
  The results shown in Figures 3 and 4 indicate that the single monopole representation may be 

used to model multiple in-phase monopole sources below 171Hz. It follows that if the machine noise 

source is dominated by in-phase excitations at this frequency range, then the machine noise may be 

modelled by a single monopole.  Above 171 Hz, it appears that a single monopole source may 

overestimate the radiated pressure and the multiple sources representation (either in phase or random 

phase) may be a more realistic modelling approach.  

In what follows, the effect of absorbing material on radiated pressure is presented briefly. Acoustic 

damping is applied to the interior of the enclosure. As an example, the acoustic damping that is 

equivalent to 25 mm fibreglass is used to model the speed of sound of the fluid medium in the 

enclosure. This is implemented by using the acoustic damping value which is equivalent to the 

absorption coefficient of the fibreglass (see Equation (16)).  A single average acoustic damping i  

is calculated for the entire octave band. Damping values of 019.0i  from an absorption 

coefficient 18.0  for frequencies below 176 Hz, and 013.0i  from 24.0  for frequencies 

from 177 Hz to 300 Hz are calculated (based on values in Ref. (8)). Only the off-axis results are 

presented in this section. 

Figure 5(a) shows the radiated pressure from the shell, with and without a layer of 25 mm fibreglass, 

due to 14 equivalent in-phase sources located on the 1 m box. Figure 5(b) shows the corresponding 

results for the 14 equivalent sources with random phases located on the 1 m box. Results show that 

there is no significant effect at low frequencies with the layer of fibreglass attached. At low 

frequencies, the acoustic energy passes through the shell without absorption. At high frequencies, an 

attenuation of 15 dB to 30 dB of the acoustic modes can be observed. It is expected that the layer of 

fibreglass will have negligible effect on the structural modes.  Similar results can be observed for the 

14 equivalent sources located on the 2 m box (Figures 5(c) and 5(d)).  
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Figure 5 – Far-field radiated pressure from a water-loaded shell due to off-axis excitations with and 

without a fibreglass layer on the internal wall from the analytical method: (a) due to 14 equivalent 

in-phase sources located on 1 m box; (b) due to 14 equivalent random phase sources located on 1 m 

box; (c) due to 14 equivalent in-phase sources located on 2 m box; (d) due to 14 equivalent random 

phase sources located on 2 m box.  ─, without fibreglass; ­ ­ ­, with fibreglass. 

 

4.2 Comparison with Numerical Results 
In this Section, the fully coupled FE/BE method described in Section 3 is used to verify the 

analytical results. Only the numerical results for 14 equivalent, in-phase sources located on the 

imaginary box are available and will be compared with those obtained from the analytical model.  

Figures 6(a) and 6(b) show the results of radiated pressures due to the central excitation for the two 

methods. There are some discrepancies in both amplitudes and resonant modes. They are believed to 

be mainly due to the different boundary conditions in the analytical and numerical methods. 

Specifically, the numerical model had constraints on the three translational directions  at the ends of the 

shell, where the analytical model had constraints only in the radial and circumferential directions and 

no constraint in the axial direction at the ends.  

Figures 6(c) and 6(d) show the corresponding results for the off-axis excitation. Results shown in 

Figures 6(c) and 6(d) indicate better agreement between the two methods compared with the centrally 

excited cases. This may be due to non-axisymmetric modes which are less affected by the difference in 

boundary conditions. 

   



Inter-noise 2014  Page 9 of 10 

Inter-noise 2014  Page 9 of 10 

0 100 200 300
60

80

100

120

140

160

180
R

a
d
ia

te
d
 p

re
s
s
u
re

 (
d
B

)

0 100 200 300
60

80

100

120

140

160

180

0 100 200 300
60

80

100

120

140

160

180

Frequency [Hz]

0 100 200 300
60

80

100

120

140

160

180

Frequency [Hz]

(a) (b)

(d)(c)

 
 

Figure 6 – Far-field radiated pressure from a water-loaded shell due to the excitation: (a) 14 

equivalent in-phase sources located on 1 m box at the centre; (b) 14 equivalent in-phase sources 

located on 2 m box at the centre; (c) 14 equivalent in-phase sources located on 1 m box off-axis; (d) 14 

equivalent in-phase sources located on 2 m box off-axis. ─, from the analytical method; ­ ­ ­, from the 

coupled FE/BE method. 

5. CONCLUSIONS 
An analytical method has been developed for predicting far-field sound radiation from a 

water-loaded finite cylindrical shell excited by interior machine noise. The machine noise was 

characterised as multiple monopoles with random amplitudes and either in-phase or with random 

phases located on an imaginary machine boundary. The results in radiated pressure show the 

dominance of acoustic resonance modes in the enclosure. A single monopole source was also used for 

the modelling of machine noise for comparison. The results demonstrate that the single monopole 

source representation may be used to model machine noise at frequencies where the acoustic wave 

length is larger than the diameter of the shell and the spacing of the monopole sources. Above this 

frequency range, the radiation due to the machine noise is more complex and the single monopole 

source may overestimate the radiated pressure due to the geometry and the interactions between the 

radiators of the machine. It was found that the phases of the radiators significantly changed the 

amplitude of the sound radiation. Increasing the machine size only slightly decreases the radiated 

pressure at some high frequencies for the current source configurations. 

An initial study including the effect of absorbing material on noise radiation is presented. The 

results indicate that the absorbing material significantly dampens the acoustic modes in the enclosure 

at high frequencies, and the attenuation in radiated pressure increases as frequency increases. However, 

the absorbing material has negligible effect on structural modes. 

Validations of the analytical method are presented for some cases by using the fully coupled FE/BE 

method. Good agreement is obtained between the two methods.  
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NOMENCLATURE 
a radius of cylindrical shell s index number 
A amplitude of vibrating system S surface area 
c sound speed t time 
K bulk modulus mnU  spectral axial displacement 

E Young’s modulus V volume 

ne  1  for 0n  and 2ne  for 0n  mnV  spectral circumferential displacement 

qe  1  for 0q  and 2qe  for 0q  W  radial displacement 

f 3 dB bandwidth frequency 
mw  width of machine 

F excitation stress mnW  spectral radial displacement 

mnF  modal force   absorption coefficient 

h thickness of shell   logarithmic decrement 

mh  height of machine q  2/12222 )4( Lqki   

nH  Hankel function of order n   02.0  (structural loss factor) 

i 1  (complex unit) i  interior loss factor of sound 

j number of monopole sources K  loss factor in K 

nJ  Bessel function of order n   mass density 

k c  (wave number)   circular frequency 

L half-length of cylindrical shell ),,( zyx  Cartesian coordinates 

ml  half- length of machine ),,( zr   cylindrical coordinates 

m axial mode number ),,( R  spherical coordinates 

n circumferential mode number   

ip  interior pressure Subscripts  

rp  far-field radiated pressure e exterior fluid 

0P  complex monopole source amplitude i interior fluid 

q acoustic mode number   

 

 


